2017-12-18 21:50:27 +01:00
|
|
|
from __future__ import print_function
|
|
|
|
from __future__ import division
|
2017-12-27 02:58:55 +01:00
|
|
|
from scipy.ndimage.filters import gaussian_filter1d
|
|
|
|
from collections import deque
|
2017-12-18 21:50:27 +01:00
|
|
|
import time
|
|
|
|
import sys
|
|
|
|
import numpy as np
|
|
|
|
import config
|
|
|
|
import microphone
|
|
|
|
import dsp
|
|
|
|
import led
|
2017-12-28 02:25:16 +01:00
|
|
|
import random
|
2017-12-18 21:50:27 +01:00
|
|
|
if config.USE_GUI:
|
2017-12-27 02:58:55 +01:00
|
|
|
from qrangeslider import QRangeSlider
|
|
|
|
from qfloatslider import QFloatSlider
|
2017-12-18 21:50:27 +01:00
|
|
|
import pyqtgraph as pg
|
|
|
|
from PyQt5.QtCore import *
|
|
|
|
from PyQt5.QtWidgets import *
|
|
|
|
|
|
|
|
class Visualizer():
|
|
|
|
def __init__(self):
|
2017-12-27 02:58:55 +01:00
|
|
|
# Dictionary linking names of effects to their respective functions
|
2017-12-18 21:50:27 +01:00
|
|
|
self.effects = {"Scroll":self.visualize_scroll,
|
|
|
|
"Energy":self.visualize_energy,
|
|
|
|
"Spectrum":self.visualize_spectrum,
|
2017-12-28 02:25:16 +01:00
|
|
|
"Power":self.visualize_power,
|
2017-12-18 21:50:27 +01:00
|
|
|
"Wavelength":self.visualize_wavelength,
|
|
|
|
"Beat":self.visualize_beat,
|
2017-12-27 02:58:55 +01:00
|
|
|
"Wave":self.visualize_wave,
|
2017-12-27 17:28:13 +01:00
|
|
|
"Bars":self.visualize_bars,
|
2017-12-27 02:58:55 +01:00
|
|
|
"Single":self.visualize_single,
|
|
|
|
"Fade":self.visualize_fade,
|
|
|
|
"Gradient":self.visualize_gradient}
|
2017-12-18 21:50:27 +01:00
|
|
|
#"Auto":self.visualize_auto}
|
2017-12-27 02:58:55 +01:00
|
|
|
# Collection of different colour in RGB format
|
2017-12-18 21:50:27 +01:00
|
|
|
self.colors = {"Red":(255,0,0),
|
|
|
|
"Orange":(255,40,0),
|
|
|
|
"Yellow":(255,255,0),
|
|
|
|
"Green":(0,255,0),
|
|
|
|
"Blue":(0,0,255),
|
|
|
|
"Light blue":(1,247,161),
|
|
|
|
"Purple":(80,5,252),
|
2017-12-27 02:58:55 +01:00
|
|
|
"Pink":(255,0,178),
|
|
|
|
"White":(255,255,255)}
|
|
|
|
# List of all the visualisation effects that aren't audio reactive.
|
|
|
|
# These will still display when no music is playing.
|
|
|
|
self.non_reactive_effects = ["Single", "Gradient", "Fade"]
|
|
|
|
# List of names of multicolour gradients, used in various effects
|
|
|
|
self.multicolor_mode_names = ["Spectral",
|
|
|
|
"Dancefloor",
|
|
|
|
"Brilliance",
|
|
|
|
"Jungle",
|
|
|
|
"Sky",
|
|
|
|
"Acid",
|
|
|
|
"Ocean"]
|
|
|
|
# The currently selected effect
|
2017-12-18 21:50:27 +01:00
|
|
|
self.current_effect = "Wavelength"
|
|
|
|
# Setup for frequency detection algorithm
|
|
|
|
self.freq_channel_history = 40
|
|
|
|
self.beat_count = 0
|
|
|
|
self.freq_channels = [deque(maxlen=self.freq_channel_history) for i in range(config.N_FFT_BINS)]
|
|
|
|
self.prev_output = np.array([[0 for i in range(config.N_PIXELS)] for i in range(3)])
|
|
|
|
self.prev_spectrum = [0 for i in range(config.N_PIXELS//2)]
|
|
|
|
self.current_freq_detects = {"beat":False,
|
|
|
|
"low":False,
|
|
|
|
"mid":False,
|
|
|
|
"high":False}
|
|
|
|
self.prev_freq_detects = {"beat":0,
|
|
|
|
"low":0,
|
|
|
|
"mid":0,
|
|
|
|
"high":0}
|
2017-12-28 02:25:16 +01:00
|
|
|
self.detection_ranges = {"beat":(0,int(config.N_FFT_BINS*0.13)),
|
|
|
|
"low":(int(config.N_FFT_BINS*0.15),int(config.N_FFT_BINS*0.4)),
|
|
|
|
"mid":(int(config.N_FFT_BINS*0.4),int(config.N_FFT_BINS*0.7)),
|
|
|
|
"high":(int(config.N_FFT_BINS*0.8),int(config.N_FFT_BINS))}
|
2017-12-18 21:50:27 +01:00
|
|
|
self.min_detect_amplitude = {"beat":0.7,
|
|
|
|
"low":0.5,
|
|
|
|
"mid":0.3,
|
2017-12-28 02:25:16 +01:00
|
|
|
"high":0.3}
|
|
|
|
self.min_percent_diff = {"beat":100,
|
|
|
|
"low":100,
|
|
|
|
"mid":50,
|
|
|
|
"high":30}
|
2017-12-27 02:58:55 +01:00
|
|
|
# Configurable options for effects go in this dictionary.
|
2017-12-18 21:50:27 +01:00
|
|
|
# Usage: self.effect_opts[effect][option]
|
|
|
|
self.effect_opts = {"Energy":{"blur": 1, # Amount of blur to apply
|
2017-12-28 19:03:09 +01:00
|
|
|
"scale":0.9, # Width of effect on strip
|
|
|
|
"r_multiplier": 1.0, # How much red
|
|
|
|
"g_multiplier": 1.0, # How much green
|
|
|
|
"b_multiplier": 1.0}, # How much blue
|
2017-12-18 21:50:27 +01:00
|
|
|
"Wave":{"color_wave": "Red", # Colour of moving bit
|
2017-12-27 02:58:55 +01:00
|
|
|
"color_flash": "White", # Colour of flashy bit
|
2017-12-18 21:50:27 +01:00
|
|
|
"wipe_len":5, # Initial length of colour bit after beat
|
2017-12-27 02:58:55 +01:00
|
|
|
"decay": 0.7, # How quickly the flash fades away
|
2017-12-18 21:50:27 +01:00
|
|
|
"wipe_speed":2}, # Number of pixels added to colour bit every frame
|
2017-12-28 19:03:09 +01:00
|
|
|
"Spectrum":{"r_multiplier": 1.0, # How much red
|
|
|
|
"g_multiplier": 1.0, # How much green
|
|
|
|
"b_multiplier": 1.0}, # How much blue
|
2017-12-27 02:58:55 +01:00
|
|
|
"Wavelength":{"roll_speed": 0, # How fast (if at all) to cycle colour overlay across strip
|
2017-12-28 02:25:16 +01:00
|
|
|
"color_mode": "Spectral", # Colour gradient to display
|
2017-12-27 02:58:55 +01:00
|
|
|
"mirror": False, # Reflect output down centre of strip
|
|
|
|
"reverse_grad": False, # Flip (LR) gradient
|
2017-12-27 17:28:13 +01:00
|
|
|
"reverse_roll": False, # Reverse movement of gradient roll
|
2017-12-28 02:25:16 +01:00
|
|
|
"blur": 3.0, # Amount of blur to apply
|
|
|
|
"flip_lr":False}, # Flip output left-right
|
2017-12-28 19:03:09 +01:00
|
|
|
"Scroll":{"decay": 0.995, # How quickly the colour fades away as it moves
|
|
|
|
"r_multiplier": 1.0, # How much red
|
|
|
|
"g_multiplier": 1.0, # How much green
|
|
|
|
"b_multiplier": 1.0, # How much blue
|
2017-12-27 02:58:55 +01:00
|
|
|
"blur": 0.2}, # Amount of blur to apply
|
2017-12-28 02:25:16 +01:00
|
|
|
"Power":{"color_mode": "Spectral", # Colour gradient to display
|
|
|
|
"s_count": config.N_PIXELS//6, # Initial number of sparks
|
|
|
|
"s_color": "White", # Color of sparks
|
|
|
|
"mirror": False, # Mirror output down central axis
|
|
|
|
"flip_lr":False}, # Flip output left-right
|
2017-12-27 02:58:55 +01:00
|
|
|
"Single":{"color": "Red"}, # Static color to show
|
|
|
|
"Beat":{"color": "Red", # Colour of beat flash
|
|
|
|
"decay": 0.7}, # How quickly the flash fades away
|
2017-12-27 17:28:13 +01:00
|
|
|
"Bars":{"resolution":4, # Number of "bars"
|
|
|
|
"color_mode":"Spectral", # Multicolour mode to use
|
|
|
|
"roll_speed":0, # How fast (if at all) to cycle colour colours across strip
|
|
|
|
"mirror": False, # Mirror down centre of strip
|
|
|
|
#"reverse_grad": False, # Flip (LR) gradient
|
2017-12-28 02:25:16 +01:00
|
|
|
"reverse_roll": False, # Reverse movement of gradient roll
|
|
|
|
"flip_lr":False}, # Flip output left-right
|
2017-12-27 02:58:55 +01:00
|
|
|
"Gradient":{"color_mode":"Spectral", # Colour gradient to display
|
2017-12-27 17:28:13 +01:00
|
|
|
"roll_speed": 0, # How fast (if at all) to cycle colour colours across strip
|
2017-12-27 02:58:55 +01:00
|
|
|
"mirror": False, # Mirror gradient down central axis
|
|
|
|
"reverse": False}, # Reverse movement of gradient
|
|
|
|
"Fade":{"color_mode":"Spectral", # Colour gradient to fade through
|
|
|
|
"roll_speed": 1, # How fast (if at all) to fade through colours
|
|
|
|
"reverse": False} # Reverse "direction" of fade (r->g->b or r<-g<-b)
|
2017-12-18 21:50:27 +01:00
|
|
|
}
|
|
|
|
# Configurations for dynamic ui generation. Effect options can be changed by widgets created at runtime,
|
2017-12-27 02:58:55 +01:00
|
|
|
# meaning that you don't need to worry about the user interface - it's all done for you. All you need to
|
|
|
|
# do is add items to this dict below.
|
|
|
|
#
|
|
|
|
# First line of code below explained (as an example):
|
|
|
|
# "Energy" is the visualization we're doing options for
|
|
|
|
# "blur" is the key in the options dict (self.effect_opts["Energy"]["blur"])
|
|
|
|
# "Blur" is the string we show on the GUI next to the slider
|
|
|
|
# "float_slider" is the GUI element we want to use
|
|
|
|
# (0.1,4.0,0.1) is a tuple containing all the details for setting up the slider (see above)
|
|
|
|
#
|
2017-12-18 21:50:27 +01:00
|
|
|
# Each effect key points to a list. Each list contains lists giving config for each option.
|
2017-12-27 02:58:55 +01:00
|
|
|
# Syntax: effect:[key, label_text, ui_element, opts]
|
2017-12-18 21:50:27 +01:00
|
|
|
# effect - the effect which you want to change options for. MUST have a key in self.effect_opts
|
2017-12-27 02:58:55 +01:00
|
|
|
# key - the key of thing you want to be changed. MUST be in self.effect_opts[effect], otherwise it won't work.
|
2017-12-18 21:50:27 +01:00
|
|
|
# label - the text displayed on the ui
|
|
|
|
# ui_element - how you want the variable to be changed
|
|
|
|
# opts - options for the ui element. Must be a tuple.
|
|
|
|
# UI Elements + opts:
|
2017-12-27 02:58:55 +01:00
|
|
|
# slider, (min, max, interval) (for integer values in a given range)
|
|
|
|
# float_slider, (min, max, interval) (for floating point values in a given range)
|
|
|
|
# checkbox, () (for True/False values)
|
|
|
|
# dropdown, (dict or list) (dict/list, example see below. Keys will be displayed in the dropdown if dict, otherwise just list items)
|
|
|
|
#
|
|
|
|
# Hope this clears things up a bit for you! GUI has never been easier..? The reason for doing this is
|
|
|
|
# 1 - To make it easy to add options to your effects for the user
|
|
|
|
# 2 - To give a consistent GUI for the user. If every options page was set out differently it would all be a mess
|
|
|
|
self.dynamic_effects_config = {"Energy":[["blur", "Blur", "float_slider", (0.1,4.0,0.1)],
|
2017-12-28 19:03:09 +01:00
|
|
|
["scale", "Scale", "float_slider", (0.4,1.0,0.05)],
|
|
|
|
["r_multiplier", "Red", "float_slider", (0.05,1.0,0.05)],
|
|
|
|
["g_multiplier", "Green", "float_slider", (0.05,1.0,0.05)],
|
|
|
|
["b_multiplier", "Blue", "float_slider", (0.05,1.0,0.05)]],
|
2017-12-27 02:58:55 +01:00
|
|
|
"Wave":[["color_flash", "Flash Color", "dropdown", self.colors],
|
|
|
|
["color_wave", "Wave Color", "dropdown", self.colors],
|
|
|
|
["wipe_len", "Wave Start Length", "slider", (0,config.N_PIXELS//4,1)],
|
|
|
|
["wipe_speed", "Wave Speed", "slider", (1,10,1)],
|
|
|
|
["decay", "Flash Decay", "float_slider", (0.1,1.0,0.05)]],
|
2017-12-28 19:03:09 +01:00
|
|
|
"Spectrum":[["r_multiplier", "Red", "float_slider", (0.05,1.0,0.05)],
|
|
|
|
["g_multiplier", "Green", "float_slider", (0.05,1.0,0.05)],
|
|
|
|
["b_multiplier", "Blue", "float_slider", (0.05,1.0,0.05)]],
|
2017-12-27 02:58:55 +01:00
|
|
|
"Wavelength":[["color_mode", "Color Mode", "dropdown", self.multicolor_mode_names],
|
|
|
|
["roll_speed", "Roll Speed", "slider", (0,8,1)],
|
|
|
|
["blur", "Blur", "float_slider", (0.1,4.0,0.1)],
|
|
|
|
["mirror", "Mirror", "checkbox"],
|
|
|
|
["reverse_grad", "Reverse Gradient", "checkbox"],
|
2017-12-28 02:25:16 +01:00
|
|
|
["reverse_roll", "Reverse Roll", "checkbox"],
|
|
|
|
["flip_lr", "Flip LR", "checkbox"]],
|
2017-12-27 02:58:55 +01:00
|
|
|
"Scroll":[["blur", "Blur", "float_slider", (0.05,4.0,0.05)],
|
2017-12-28 19:03:09 +01:00
|
|
|
["decay", "Decay", "float_slider", (0.97,1.0,0.0005)],
|
|
|
|
["r_multiplier", "Red", "float_slider", (0.05,1.0,0.05)],
|
|
|
|
["g_multiplier", "Green", "float_slider", (0.05,1.0,0.05)],
|
|
|
|
["b_multiplier", "Blue", "float_slider", (0.05,1.0,0.05)]],
|
2017-12-28 02:25:16 +01:00
|
|
|
"Power":[["color_mode", "Color Mode", "dropdown", self.multicolor_mode_names],
|
|
|
|
["s_color", "Spark Color ", "dropdown", self.colors],
|
|
|
|
["s_count", "Spark Amount", "slider", (0,config.N_PIXELS//6,1)],
|
|
|
|
["mirror", "Mirror", "checkbox"],
|
|
|
|
["flip_lr", "Flip LR", "checkbox"]],
|
2017-12-27 02:58:55 +01:00
|
|
|
"Single":[["color", "Color", "dropdown", self.colors]],
|
|
|
|
"Beat":[["color", "Color", "dropdown", self.colors],
|
|
|
|
["decay", "Flash Decay", "float_slider", (0.3,0.98,0.005)]],
|
2017-12-27 17:28:13 +01:00
|
|
|
"Bars":[["color_mode", "Color Mode", "dropdown", self.multicolor_mode_names],
|
|
|
|
["resolution", "Resolution", "slider", (1, config.N_FFT_BINS, 1)],
|
|
|
|
["roll_speed", "Roll Speed", "slider", (0,8,1)],
|
2017-12-28 02:25:16 +01:00
|
|
|
["flip_lr", "Flip LR", "checkbox"],
|
2017-12-27 17:28:13 +01:00
|
|
|
["mirror", "Mirror", "checkbox"],
|
|
|
|
["reverse_roll", "Reverse Roll", "checkbox"]],
|
2017-12-27 02:58:55 +01:00
|
|
|
"Gradient":[["color_mode", "Color Mode", "dropdown", self.multicolor_mode_names],
|
|
|
|
["roll_speed", "Roll Speed", "slider", (0,8,1)],
|
|
|
|
["mirror", "Mirror", "checkbox"],
|
|
|
|
["reverse", "Reverse", "checkbox"]],
|
|
|
|
"Fade":[["color_mode", "Color Mode", "dropdown", self.multicolor_mode_names],
|
|
|
|
["roll_speed", "Fade Speed", "slider", (0,8,1)],
|
|
|
|
["reverse", "Reverse", "checkbox"]]
|
2017-12-18 21:50:27 +01:00
|
|
|
}
|
2017-12-28 02:25:16 +01:00
|
|
|
# Setup for latency timer
|
|
|
|
self.latency_deque = deque(maxlen=10)
|
2017-12-18 21:50:27 +01:00
|
|
|
# Setup for "Wave" (don't change these)
|
|
|
|
self.wave_wipe_count = 0
|
2017-12-28 02:25:16 +01:00
|
|
|
# Setup for "Power" (don't change these)
|
|
|
|
self.power_indexes = []
|
|
|
|
self.power_brightness = 0
|
2017-12-27 02:58:55 +01:00
|
|
|
# Setup for multicolour modes (don't mess with this either unless you want to add in your own multicolour modes)
|
|
|
|
# If there's a multicolour mode you would like to see, let me know on GitHub!
|
|
|
|
self.multicolor_modes = {}
|
2017-12-18 21:50:27 +01:00
|
|
|
# chunks of colour gradients
|
2017-12-27 02:58:55 +01:00
|
|
|
_blank_overlay = np.zeros((3,config.N_PIXELS))
|
2017-12-18 21:50:27 +01:00
|
|
|
# used to construct rgb overlay. [0-255,255...] whole length of strip
|
|
|
|
_gradient_whole = [int(i*255/(config.N_PIXELS//2)) for i in range(config.N_PIXELS//2)] +\
|
|
|
|
[255 for i in range(config.N_PIXELS//2)]
|
2017-12-27 02:58:55 +01:00
|
|
|
# also used to make bits and pieces. [0-255], 1/2 length of strip
|
|
|
|
_alt_gradient_half = [int(i*255/(config.N_PIXELS//2)) for i in range(config.N_PIXELS//2)]
|
2017-12-18 21:50:27 +01:00
|
|
|
# used to construct rgb overlay. [0-255,255...] 1/2 length of strip
|
|
|
|
_gradient_half = _gradient_whole[::2]
|
2017-12-27 02:58:55 +01:00
|
|
|
# Spectral colour mode
|
|
|
|
self.multicolor_modes["Spectral"] = np.zeros((3,config.N_PIXELS))
|
2017-12-27 17:28:13 +01:00
|
|
|
self.multicolor_modes["Spectral"][2, :config.N_PIXELS//2] = _gradient_half[::-1]
|
2017-12-27 02:58:55 +01:00
|
|
|
self.multicolor_modes["Spectral"][1, :] = _gradient_half + _gradient_half[::-1]
|
2017-12-27 17:28:13 +01:00
|
|
|
self.multicolor_modes["Spectral"][0, :] = np.flipud(self.multicolor_modes["Spectral"][2])
|
2017-12-27 02:58:55 +01:00
|
|
|
# Dancefloor colour mode
|
|
|
|
self.multicolor_modes["Dancefloor"] = np.zeros((3,config.N_PIXELS))
|
2017-12-27 17:28:13 +01:00
|
|
|
self.multicolor_modes["Dancefloor"][2, :] = _gradient_whole[::-1]
|
|
|
|
self.multicolor_modes["Dancefloor"][0, :] = _gradient_whole
|
2017-12-27 02:58:55 +01:00
|
|
|
# Brilliance colour mode
|
|
|
|
self.multicolor_modes["Brilliance"] = np.zeros((3,config.N_PIXELS))
|
2017-12-27 17:28:13 +01:00
|
|
|
self.multicolor_modes["Brilliance"][2, :] = _gradient_whole[::-1]
|
2017-12-27 02:58:55 +01:00
|
|
|
self.multicolor_modes["Brilliance"][1, :] = 255
|
2017-12-27 17:28:13 +01:00
|
|
|
self.multicolor_modes["Brilliance"][0, :] = _gradient_whole
|
2017-12-27 02:58:55 +01:00
|
|
|
# Jungle colour mode
|
|
|
|
self.multicolor_modes["Jungle"] = np.zeros((3,config.N_PIXELS))
|
2017-12-27 17:28:13 +01:00
|
|
|
self.multicolor_modes["Jungle"][1, :] = _gradient_whole[::-1]
|
|
|
|
self.multicolor_modes["Jungle"][0, :] = _gradient_whole
|
2017-12-27 02:58:55 +01:00
|
|
|
# Sky colour mode
|
|
|
|
self.multicolor_modes["Sky"] = np.zeros((3,config.N_PIXELS))
|
2017-12-27 17:28:13 +01:00
|
|
|
self.multicolor_modes["Sky"][1, :config.N_PIXELS//2] = _alt_gradient_half[::-1]
|
|
|
|
self.multicolor_modes["Sky"][0, config.N_PIXELS//2:] = _alt_gradient_half
|
2017-12-27 02:58:55 +01:00
|
|
|
self.multicolor_modes["Sky"][2, :] = 255
|
|
|
|
# Acid colour mode
|
|
|
|
self.multicolor_modes["Acid"] = np.zeros((3,config.N_PIXELS))
|
2017-12-27 17:28:13 +01:00
|
|
|
self.multicolor_modes["Acid"][2, :config.N_PIXELS//2] = _alt_gradient_half[::-1]
|
2017-12-27 02:58:55 +01:00
|
|
|
self.multicolor_modes["Acid"][1, :] = 255
|
2017-12-27 17:28:13 +01:00
|
|
|
self.multicolor_modes["Acid"][0, config.N_PIXELS//2:] = _alt_gradient_half
|
2017-12-27 02:58:55 +01:00
|
|
|
# Ocean colour mode
|
|
|
|
self.multicolor_modes["Ocean"] = np.zeros((3,config.N_PIXELS))
|
|
|
|
self.multicolor_modes["Ocean"][1, :] = _gradient_whole
|
|
|
|
self.multicolor_modes["Ocean"][2, :] = _gradient_whole[::-1]
|
|
|
|
for i in self.multicolor_modes:
|
|
|
|
self.multicolor_modes[i] = np.concatenate((self.multicolor_modes[i][:, ::-1],
|
|
|
|
self.multicolor_modes[i]), axis=1)
|
|
|
|
|
|
|
|
def get_vis(self, y, audio_input):
|
2017-12-18 21:50:27 +01:00
|
|
|
self.update_freq_channels(y)
|
|
|
|
self.detect_freqs()
|
2017-12-28 02:25:16 +01:00
|
|
|
time1 = time.time()
|
2017-12-27 02:58:55 +01:00
|
|
|
if audio_input:
|
|
|
|
self.prev_output = np.copy(self.effects[self.current_effect](y))
|
|
|
|
elif self.current_effect in self.non_reactive_effects:
|
|
|
|
self.prev_output = np.copy(self.effects[self.current_effect](y))
|
|
|
|
else:
|
|
|
|
self.prev_output = np.multiply(self.prev_output, 0.95)
|
2017-12-28 02:25:16 +01:00
|
|
|
time2 = time.time()
|
|
|
|
self.latency_deque.append(1000*(time2-time1))
|
|
|
|
if config.USE_GUI:
|
|
|
|
gui.label_latency.setText("{} ms Processing Latency ".format(int(sum(self.latency_deque)/len(self.latency_deque))))
|
2017-12-18 21:50:27 +01:00
|
|
|
return self.prev_output
|
|
|
|
|
|
|
|
def _split_equal(self, value, parts):
|
|
|
|
value = float(value)
|
|
|
|
return [int(round(i*value/parts)) for i in range(1,parts+1)]
|
|
|
|
|
|
|
|
def update_freq_channels(self, y):
|
|
|
|
for i in range(len(y)):
|
|
|
|
self.freq_channels[i].appendleft(y[i])
|
|
|
|
|
|
|
|
def detect_freqs(self):
|
|
|
|
"""
|
|
|
|
Function that updates current_freq_detects. Any visualisation algorithm can check if
|
|
|
|
there is currently a beat, low, mid, or high by querying the self.current_freq_detects dict.
|
|
|
|
"""
|
|
|
|
channel_avgs = []
|
|
|
|
differences = []
|
|
|
|
for i in range(config.N_FFT_BINS):
|
|
|
|
channel_avgs.append(sum(self.freq_channels[i])/len(self.freq_channels[i]))
|
|
|
|
differences.append(((self.freq_channels[i][0]-channel_avgs[i])*100)//channel_avgs[i])
|
|
|
|
for i in ["beat", "low", "mid", "high"]:
|
2017-12-28 02:25:16 +01:00
|
|
|
if any(differences[j] >= self.min_percent_diff[i]\
|
|
|
|
and self.freq_channels[j][0] >= self.min_detect_amplitude[i]\
|
|
|
|
for j in range(*self.detection_ranges[i]))\
|
|
|
|
and (time.time() - self.prev_freq_detects[i] > 0.1)\
|
|
|
|
and len(self.freq_channels[0]) == self.freq_channel_history:
|
2017-12-18 21:50:27 +01:00
|
|
|
self.prev_freq_detects[i] = time.time()
|
|
|
|
self.current_freq_detects[i] = True
|
|
|
|
#print(i)
|
|
|
|
else:
|
2017-12-27 02:58:55 +01:00
|
|
|
self.current_freq_detects[i] = False
|
2017-12-18 21:50:27 +01:00
|
|
|
|
|
|
|
def visualize_scroll(self, y):
|
|
|
|
"""Effect that originates in the center and scrolls outwards"""
|
|
|
|
global p
|
2017-12-28 19:03:09 +01:00
|
|
|
#print(max(y), min(y))
|
|
|
|
y = y**4.0
|
2017-12-18 21:50:27 +01:00
|
|
|
gain.update(y)
|
|
|
|
y /= gain.value
|
|
|
|
y *= 255.0
|
2017-12-28 19:03:09 +01:00
|
|
|
r = int(np.max(y[:len(y) // 3])*self.effect_opts["Scroll"]["r_multiplier"])
|
|
|
|
g = int(np.max(y[len(y) // 3: 2 * len(y) // 3])*self.effect_opts["Scroll"]["g_multiplier"])
|
|
|
|
b = int(np.max(y[2 * len(y) // 3:])*self.effect_opts["Scroll"]["b_multiplier"])
|
2017-12-18 21:50:27 +01:00
|
|
|
# Scrolling effect window
|
|
|
|
p[:, 1:] = p[:, :-1]
|
2017-12-27 02:58:55 +01:00
|
|
|
p *= self.effect_opts["Scroll"]["decay"]
|
|
|
|
p = gaussian_filter1d(p, sigma=self.effect_opts["Scroll"]["blur"])
|
2017-12-18 21:50:27 +01:00
|
|
|
# Create new color originating at the center
|
|
|
|
p[0, 0] = r
|
|
|
|
p[1, 0] = g
|
|
|
|
p[2, 0] = b
|
|
|
|
# Update the LED strip
|
|
|
|
return np.concatenate((p[:, ::-1], p), axis=1)
|
|
|
|
|
|
|
|
|
|
|
|
def visualize_energy(self, y):
|
|
|
|
"""Effect that expands from the center with increasing sound energy"""
|
|
|
|
global p
|
|
|
|
y = np.copy(y)
|
|
|
|
gain.update(y)
|
|
|
|
y /= gain.value
|
|
|
|
scale = self.effect_opts["Energy"]["scale"]
|
|
|
|
# Scale by the width of the LED strip
|
|
|
|
y *= float((config.N_PIXELS * scale) - 1)
|
|
|
|
# Map color channels according to energy in the different freq bands
|
2017-12-28 19:03:09 +01:00
|
|
|
r = int(np.mean(y[:len(y) // 3]**scale)*self.effect_opts["Energy"]["r_multiplier"])
|
|
|
|
g = int(np.mean(y[len(y) // 3: 2 * len(y) // 3]**scale)*self.effect_opts["Energy"]["g_multiplier"])
|
|
|
|
b = int(np.mean(y[2 * len(y) // 3:]**scale)*self.effect_opts["Energy"]["b_multiplier"])
|
2017-12-18 21:50:27 +01:00
|
|
|
# Assign color to different frequency regions
|
|
|
|
p[0, :r] = 255.0
|
|
|
|
p[0, r:] = 0.0
|
|
|
|
p[1, :g] = 255.0
|
|
|
|
p[1, g:] = 0.0
|
|
|
|
p[2, :b] = 255.0
|
|
|
|
p[2, b:] = 0.0
|
|
|
|
p_filt.update(p)
|
|
|
|
p = np.round(p_filt.value)
|
|
|
|
# Apply blur to smooth the edges
|
|
|
|
p[0, :] = gaussian_filter1d(p[0, :], sigma=self.effect_opts["Energy"]["blur"])
|
|
|
|
p[1, :] = gaussian_filter1d(p[1, :], sigma=self.effect_opts["Energy"]["blur"])
|
|
|
|
p[2, :] = gaussian_filter1d(p[2, :], sigma=self.effect_opts["Energy"]["blur"])
|
|
|
|
# Set the new pixel value
|
|
|
|
return np.concatenate((p[:, ::-1], p), axis=1)
|
|
|
|
|
|
|
|
def visualize_wavelength(self, y):
|
|
|
|
y = np.copy(interpolate(y, config.N_PIXELS // 2))
|
|
|
|
common_mode.update(y)
|
|
|
|
diff = y - self.prev_spectrum
|
|
|
|
self.prev_spectrum = np.copy(y)
|
|
|
|
# Color channel mappings
|
|
|
|
r = r_filt.update(y - common_mode.value)
|
2017-12-27 02:58:55 +01:00
|
|
|
#g = np.abs(diff)
|
2017-12-18 21:50:27 +01:00
|
|
|
b = b_filt.update(np.copy(y))
|
2017-12-27 02:58:55 +01:00
|
|
|
r = np.array([j for i in zip(r,r) for j in i])
|
|
|
|
output = np.array([self.multicolor_modes[self.effect_opts["Wavelength"]["color_mode"]][0][
|
2017-12-27 17:28:13 +01:00
|
|
|
(config.N_PIXELS if self.effect_opts["Wavelength"]["reverse_grad"] else 0):
|
|
|
|
(None if self.effect_opts["Wavelength"]["reverse_grad"] else config.N_PIXELS):]*r,
|
2017-12-27 02:58:55 +01:00
|
|
|
self.multicolor_modes[self.effect_opts["Wavelength"]["color_mode"]][1][
|
2017-12-27 17:28:13 +01:00
|
|
|
(config.N_PIXELS if self.effect_opts["Wavelength"]["reverse_grad"] else 0):
|
|
|
|
(None if self.effect_opts["Wavelength"]["reverse_grad"] else config.N_PIXELS):]*r,
|
2017-12-27 02:58:55 +01:00
|
|
|
self.multicolor_modes[self.effect_opts["Wavelength"]["color_mode"]][2][
|
2017-12-27 17:28:13 +01:00
|
|
|
(config.N_PIXELS if self.effect_opts["Wavelength"]["reverse_grad"] else 0):
|
|
|
|
(None if self.effect_opts["Wavelength"]["reverse_grad"] else config.N_PIXELS):]*r])
|
|
|
|
#self.prev_spectrum = y
|
2017-12-27 02:58:55 +01:00
|
|
|
self.multicolor_modes[self.effect_opts["Wavelength"]["color_mode"]] = np.roll(
|
|
|
|
self.multicolor_modes[self.effect_opts["Wavelength"]["color_mode"]],
|
|
|
|
self.effect_opts["Wavelength"]["roll_speed"]*(-1 if self.effect_opts["Wavelength"]["reverse_roll"] else 1),
|
|
|
|
axis=1)
|
|
|
|
output[0] = gaussian_filter1d(output[0], sigma=self.effect_opts["Wavelength"]["blur"])
|
|
|
|
output[1] = gaussian_filter1d(output[1], sigma=self.effect_opts["Wavelength"]["blur"])
|
|
|
|
output[2] = gaussian_filter1d(output[2], sigma=self.effect_opts["Wavelength"]["blur"])
|
2017-12-28 02:25:16 +01:00
|
|
|
if self.effect_opts["Wavelength"]["flip_lr"]:
|
|
|
|
output = np.fliplr(output)
|
2017-12-27 02:58:55 +01:00
|
|
|
if self.effect_opts["Wavelength"]["mirror"]:
|
|
|
|
output = np.concatenate((output[:, ::-2], output[:, ::2]), axis=1)
|
2017-12-18 21:50:27 +01:00
|
|
|
return output
|
|
|
|
|
|
|
|
def visualize_spectrum(self, y):
|
|
|
|
"""Effect that maps the Mel filterbank frequencies onto the LED strip"""
|
|
|
|
global p
|
|
|
|
#print(len(y))
|
|
|
|
#print(y)
|
|
|
|
y = np.copy(interpolate(y, config.N_PIXELS // 2))
|
|
|
|
common_mode.update(y)
|
|
|
|
diff = y - self.prev_spectrum
|
|
|
|
self.prev_spectrum = np.copy(y)
|
|
|
|
# Color channel mappings
|
|
|
|
r = r_filt.update(y - common_mode.value)
|
|
|
|
g = np.abs(diff)
|
|
|
|
b = b_filt.update(np.copy(y))
|
2017-12-28 19:03:09 +01:00
|
|
|
r *= self.effect_opts["Spectrum"]["r_multiplier"]
|
|
|
|
g *= self.effect_opts["Spectrum"]["g_multiplier"]
|
|
|
|
b *= self.effect_opts["Spectrum"]["b_multiplier"]
|
2017-12-18 21:50:27 +01:00
|
|
|
# Mirror the color channels for symmetric output
|
|
|
|
r = np.concatenate((r[::-1], r))
|
|
|
|
g = np.concatenate((g[::-1], g))
|
|
|
|
b = np.concatenate((b[::-1], b))
|
|
|
|
output = np.array([r, g,b]) * 255
|
|
|
|
self.prev_spectrum = y
|
|
|
|
return output
|
|
|
|
|
|
|
|
def visualize_auto(self,y):
|
|
|
|
"""Automatically (intelligently?) cycle through effects"""
|
|
|
|
return self.visualize_beat(y) # real intelligent
|
|
|
|
|
|
|
|
def visualize_wave(self, y):
|
|
|
|
"""Effect that flashes to the beat with scrolling coloured bits"""
|
|
|
|
if self.current_freq_detects["beat"]:
|
2017-12-27 02:58:55 +01:00
|
|
|
output = np.zeros((3,config.N_PIXELS))
|
|
|
|
output[0][:]=self.colors[self.effect_opts["Wave"]["color_flash"]][0]
|
|
|
|
output[1][:]=self.colors[self.effect_opts["Wave"]["color_flash"]][1]
|
|
|
|
output[2][:]=self.colors[self.effect_opts["Wave"]["color_flash"]][2]
|
2017-12-18 21:50:27 +01:00
|
|
|
self.wave_wipe_count = self.effect_opts["Wave"]["wipe_len"]
|
|
|
|
else:
|
|
|
|
output = np.copy(self.prev_output)
|
|
|
|
#for i in range(len(self.prev_output)):
|
|
|
|
# output[i] = np.hsplit(self.prev_output[i],2)[0]
|
2017-12-27 02:58:55 +01:00
|
|
|
output = np.multiply(self.prev_output,self.effect_opts["Wave"]["decay"])
|
2017-12-18 21:50:27 +01:00
|
|
|
for i in range(self.wave_wipe_count):
|
|
|
|
output[0][i]=self.colors[self.effect_opts["Wave"]["color_wave"]][0]
|
|
|
|
output[0][-i]=self.colors[self.effect_opts["Wave"]["color_wave"]][0]
|
|
|
|
output[1][i]=self.colors[self.effect_opts["Wave"]["color_wave"]][1]
|
|
|
|
output[1][-i]=self.colors[self.effect_opts["Wave"]["color_wave"]][1]
|
|
|
|
output[2][i]=self.colors[self.effect_opts["Wave"]["color_wave"]][2]
|
|
|
|
output[2][-i]=self.colors[self.effect_opts["Wave"]["color_wave"]][2]
|
|
|
|
#output = np.concatenate([output,np.fliplr(output)], axis=1)
|
|
|
|
self.wave_wipe_count += self.effect_opts["Wave"]["wipe_speed"]
|
|
|
|
if self.wave_wipe_count > config.N_PIXELS//2:
|
|
|
|
self.wave_wipe_count = config.N_PIXELS//2
|
|
|
|
return output
|
|
|
|
|
|
|
|
def visualize_beat(self, y):
|
|
|
|
"""Effect that flashes to the beat"""
|
|
|
|
if self.current_freq_detects["beat"]:
|
2017-12-27 02:58:55 +01:00
|
|
|
output = np.zeros((3,config.N_PIXELS))
|
|
|
|
output[0][:]=self.colors[self.effect_opts["Beat"]["color"]][0]
|
|
|
|
output[1][:]=self.colors[self.effect_opts["Beat"]["color"]][1]
|
|
|
|
output[2][:]=self.colors[self.effect_opts["Beat"]["color"]][2]
|
2017-12-18 21:50:27 +01:00
|
|
|
else:
|
|
|
|
output = np.copy(self.prev_output)
|
2017-12-27 02:58:55 +01:00
|
|
|
output = np.multiply(self.prev_output,self.effect_opts["Beat"]["decay"])
|
|
|
|
return output
|
|
|
|
|
2017-12-27 17:28:13 +01:00
|
|
|
def visualize_bars(self, y):
|
|
|
|
# Bit of fiddling with the y values
|
|
|
|
y = np.copy(interpolate(y, config.N_PIXELS // 2))
|
|
|
|
common_mode.update(y)
|
|
|
|
self.prev_spectrum = np.copy(y)
|
|
|
|
# Color channel mappings
|
|
|
|
r = r_filt.update(y - common_mode.value)
|
|
|
|
r = np.array([j for i in zip(r,r) for j in i])
|
|
|
|
# Split y into [resulution] chunks and calculate the average of each
|
|
|
|
max_values = np.array([max(i) for i in np.array_split(r, self.effect_opts["Bars"]["resolution"])])
|
|
|
|
max_values = np.clip(max_values, 0, 1)
|
|
|
|
color_sets = []
|
|
|
|
for i in range(self.effect_opts["Bars"]["resolution"]):
|
|
|
|
# [r,g,b] values from a multicolour gradient array at [resulution] equally spaced intervals
|
|
|
|
color_sets.append([self.multicolor_modes[self.effect_opts["Bars"]["color_mode"]]\
|
|
|
|
[j][i*(config.N_PIXELS//self.effect_opts["Bars"]["resolution"])] for j in range(3)])
|
|
|
|
output = np.zeros((3,config.N_PIXELS))
|
|
|
|
chunks = np.array_split(output[0], self.effect_opts["Bars"]["resolution"])
|
|
|
|
n = 0
|
|
|
|
# Assign blocks with heights corresponding to max_values and colours from color_sets
|
|
|
|
for i in range(len(chunks)):
|
|
|
|
m = len(chunks[i])
|
|
|
|
for j in range(3):
|
|
|
|
output[j][n:n+m] = color_sets[i][j]*max_values[i]
|
|
|
|
n += m
|
|
|
|
self.multicolor_modes[self.effect_opts["Bars"]["color_mode"]] = np.roll(
|
|
|
|
self.multicolor_modes[self.effect_opts["Bars"]["color_mode"]],
|
|
|
|
self.effect_opts["Bars"]["roll_speed"]*(-1 if self.effect_opts["Bars"]["reverse_roll"] else 1),
|
|
|
|
axis=1)
|
2017-12-28 02:25:16 +01:00
|
|
|
if self.effect_opts["Bars"]["flip_lr"]:
|
|
|
|
output = np.fliplr(output)
|
2017-12-27 17:28:13 +01:00
|
|
|
if self.effect_opts["Bars"]["mirror"]:
|
|
|
|
output = np.concatenate((output[:, ::-2], output[:, ::2]), axis=1)
|
|
|
|
return output
|
|
|
|
|
2017-12-28 02:25:16 +01:00
|
|
|
def visualize_power(self, y):
|
|
|
|
#self.effect_opts["Power"]["color_mode"]
|
|
|
|
# Bit of fiddling with the y values
|
|
|
|
y = np.copy(interpolate(y, config.N_PIXELS // 2))
|
|
|
|
common_mode.update(y)
|
|
|
|
self.prev_spectrum = np.copy(y)
|
|
|
|
# Color channel mappings
|
|
|
|
r = r_filt.update(y - common_mode.value)
|
|
|
|
r = np.array([j for i in zip(r,r) for j in i])
|
|
|
|
output = np.array([self.multicolor_modes[self.effect_opts["Power"]["color_mode"]][0, :config.N_PIXELS]*r,
|
|
|
|
self.multicolor_modes[self.effect_opts["Power"]["color_mode"]][1, :config.N_PIXELS]*r,
|
|
|
|
self.multicolor_modes[self.effect_opts["Power"]["color_mode"]][2, :config.N_PIXELS]*r])
|
|
|
|
# if there's a high (eg clap):
|
|
|
|
if self.current_freq_detects["high"]:
|
|
|
|
self.power_brightness = 1.0
|
|
|
|
# Generate random indexes
|
|
|
|
self.power_indexes = random.sample(range(config.N_PIXELS), self.effect_opts["Power"]["s_count"])
|
|
|
|
#print("ye")
|
|
|
|
# Assign colour to the random indexes
|
|
|
|
for index in self.power_indexes:
|
|
|
|
output[0, index] = int(self.colors[self.effect_opts["Power"]["s_color"]][0]*self.power_brightness)
|
|
|
|
output[1, index] = int(self.colors[self.effect_opts["Power"]["s_color"]][1]*self.power_brightness)
|
|
|
|
output[2, index] = int(self.colors[self.effect_opts["Power"]["s_color"]][2]*self.power_brightness)
|
|
|
|
# Remove some of the indexes for next time
|
|
|
|
self.power_indexes = [i for i in self.power_indexes if i not in random.sample(self.power_indexes, len(self.power_indexes)//4)]
|
|
|
|
if len(self.power_indexes) <= 4:
|
|
|
|
self.power_indexes = []
|
|
|
|
# Fade the colour of the sparks out a bit for next time
|
|
|
|
if self.power_brightness > 0:
|
|
|
|
self.power_brightness -= 0.05
|
|
|
|
# Calculate length of bass bar based on max bass frequency volume and length of strip
|
|
|
|
strip_len = int((config.N_PIXELS//3)*max(y[:int(config.N_FFT_BINS*0.2)]))
|
|
|
|
# Add the bass bars into the output. Colour proportional to length
|
|
|
|
output[0][:strip_len] = self.multicolor_modes[self.effect_opts["Power"]["color_mode"]][0][strip_len]
|
|
|
|
output[1][:strip_len] = self.multicolor_modes[self.effect_opts["Power"]["color_mode"]][1][strip_len]
|
|
|
|
output[2][:strip_len] = self.multicolor_modes[self.effect_opts["Power"]["color_mode"]][2][strip_len]
|
|
|
|
if self.effect_opts["Power"]["flip_lr"]:
|
|
|
|
output = np.fliplr(output)
|
|
|
|
if self.effect_opts["Power"]["mirror"]:
|
|
|
|
output = np.concatenate((output[:, ::-2], output[:, ::2]), axis=1)
|
|
|
|
return output
|
2017-12-27 17:28:13 +01:00
|
|
|
|
2017-12-27 02:58:55 +01:00
|
|
|
def visualize_single(self, y):
|
2017-12-27 17:28:13 +01:00
|
|
|
"Displays a single colour, non audio reactive"
|
2017-12-27 02:58:55 +01:00
|
|
|
output = np.zeros((3,config.N_PIXELS))
|
|
|
|
output[0][:]=self.colors[self.effect_opts["Single"]["color"]][0]
|
|
|
|
output[1][:]=self.colors[self.effect_opts["Single"]["color"]][1]
|
|
|
|
output[2][:]=self.colors[self.effect_opts["Single"]["color"]][2]
|
2017-12-18 21:50:27 +01:00
|
|
|
return output
|
|
|
|
|
2017-12-27 02:58:55 +01:00
|
|
|
def visualize_gradient(self, y):
|
2017-12-27 17:28:13 +01:00
|
|
|
"Displays a multicolour gradient, non audio reactive"
|
2017-12-27 02:58:55 +01:00
|
|
|
output = np.array([self.multicolor_modes[self.effect_opts["Gradient"]["color_mode"]][0][:config.N_PIXELS],
|
|
|
|
self.multicolor_modes[self.effect_opts["Gradient"]["color_mode"]][1][:config.N_PIXELS],
|
|
|
|
self.multicolor_modes[self.effect_opts["Gradient"]["color_mode"]][2][:config.N_PIXELS]])
|
|
|
|
self.multicolor_modes[self.effect_opts["Gradient"]["color_mode"]] = np.roll(
|
|
|
|
self.multicolor_modes[self.effect_opts["Gradient"]["color_mode"]],
|
|
|
|
self.effect_opts["Gradient"]["roll_speed"]*(-1 if self.effect_opts["Gradient"]["reverse"] else 1),
|
|
|
|
axis=1)
|
|
|
|
if self.effect_opts["Gradient"]["mirror"]:
|
|
|
|
output = np.concatenate((output[:, ::-2], output[:, ::2]), axis=1)
|
|
|
|
return output
|
2017-12-18 21:50:27 +01:00
|
|
|
|
2017-12-27 02:58:55 +01:00
|
|
|
def visualize_fade(self, y):
|
2017-12-27 17:28:13 +01:00
|
|
|
"Fades through a multicolour gradient, non audio reactive"
|
2017-12-27 02:58:55 +01:00
|
|
|
output = [[self.multicolor_modes[self.effect_opts["Fade"]["color_mode"]][0][0] for i in range(config.N_PIXELS)],
|
|
|
|
[self.multicolor_modes[self.effect_opts["Fade"]["color_mode"]][1][0] for i in range(config.N_PIXELS)],
|
|
|
|
[self.multicolor_modes[self.effect_opts["Fade"]["color_mode"]][2][0] for i in range(config.N_PIXELS)]]
|
|
|
|
self.multicolor_modes[self.effect_opts["Fade"]["color_mode"]] = np.roll(
|
|
|
|
self.multicolor_modes[self.effect_opts["Fade"]["color_mode"]],
|
|
|
|
self.effect_opts["Fade"]["roll_speed"]*(-1 if self.effect_opts["Fade"]["reverse"] else 1),
|
|
|
|
axis=1)
|
|
|
|
return output
|
|
|
|
|
2017-12-18 21:50:27 +01:00
|
|
|
class GUI(QWidget):
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
self.initUI()
|
|
|
|
|
|
|
|
def initUI(self):
|
|
|
|
# ==================================== Set up window and wrapping layout
|
|
|
|
self.setWindowTitle("Visualization")
|
|
|
|
wrapper = QVBoxLayout()
|
|
|
|
|
|
|
|
# ========================================== Set up FPS and error labels
|
|
|
|
labels_layout = QHBoxLayout()
|
|
|
|
self.label_error = QLabel("")
|
|
|
|
self.label_fps = QLabel("")
|
2017-12-28 02:25:16 +01:00
|
|
|
self.label_latency = QLabel("")
|
2017-12-18 21:50:27 +01:00
|
|
|
self.label_fps.setAlignment(Qt.AlignRight | Qt.AlignVCenter)
|
2017-12-28 02:25:16 +01:00
|
|
|
self.label_latency.setAlignment(Qt.AlignRight | Qt.AlignVCenter)
|
2017-12-18 21:50:27 +01:00
|
|
|
labels_layout.addWidget(self.label_error)
|
|
|
|
labels_layout.addStretch()
|
2017-12-28 02:25:16 +01:00
|
|
|
labels_layout.addWidget(self.label_latency)
|
2017-12-18 21:50:27 +01:00
|
|
|
labels_layout.addWidget(self.label_fps)
|
|
|
|
|
|
|
|
# ================================================== Set up graph layout
|
|
|
|
graph_view = pg.GraphicsView()
|
|
|
|
graph_layout = pg.GraphicsLayout(border=(100,100,100))
|
|
|
|
graph_view.setCentralItem(graph_layout)
|
|
|
|
# Mel filterbank plot
|
|
|
|
fft_plot = graph_layout.addPlot(title='Filterbank Output', colspan=3)
|
|
|
|
fft_plot.setRange(yRange=[-0.1, 1.2])
|
|
|
|
fft_plot.disableAutoRange(axis=pg.ViewBox.YAxis)
|
|
|
|
x_data = np.array(range(1, config.N_FFT_BINS + 1))
|
|
|
|
self.mel_curve = pg.PlotCurveItem()
|
|
|
|
self.mel_curve.setData(x=x_data, y=x_data*0)
|
|
|
|
fft_plot.addItem(self.mel_curve)
|
|
|
|
# Visualization plot
|
|
|
|
graph_layout.nextRow()
|
|
|
|
led_plot = graph_layout.addPlot(title='Visualization Output', colspan=3)
|
|
|
|
led_plot.setRange(yRange=[-5, 260])
|
|
|
|
led_plot.disableAutoRange(axis=pg.ViewBox.YAxis)
|
|
|
|
# Pen for each of the color channel curves
|
|
|
|
r_pen = pg.mkPen((255, 30, 30, 200), width=4)
|
|
|
|
g_pen = pg.mkPen((30, 255, 30, 200), width=4)
|
|
|
|
b_pen = pg.mkPen((30, 30, 255, 200), width=4)
|
|
|
|
# Color channel curves
|
|
|
|
self.r_curve = pg.PlotCurveItem(pen=r_pen)
|
|
|
|
self.g_curve = pg.PlotCurveItem(pen=g_pen)
|
|
|
|
self.b_curve = pg.PlotCurveItem(pen=b_pen)
|
|
|
|
# Define x data
|
|
|
|
x_data = np.array(range(1, config.N_PIXELS + 1))
|
|
|
|
self.r_curve.setData(x=x_data, y=x_data*0)
|
|
|
|
self.g_curve.setData(x=x_data, y=x_data*0)
|
|
|
|
self.b_curve.setData(x=x_data, y=x_data*0)
|
|
|
|
# Add curves to plot
|
|
|
|
led_plot.addItem(self.r_curve)
|
|
|
|
led_plot.addItem(self.g_curve)
|
|
|
|
led_plot.addItem(self.b_curve)
|
|
|
|
|
|
|
|
# ================================================= Set up button layout
|
2017-12-27 02:58:55 +01:00
|
|
|
label_reactive = QLabel("Audio Reactive Effects")
|
|
|
|
label_non_reactive = QLabel("Non Reactive Effects")
|
|
|
|
reactive_button_grid = QGridLayout()
|
|
|
|
non_reactive_button_grid = QGridLayout()
|
2017-12-18 21:50:27 +01:00
|
|
|
buttons = {}
|
|
|
|
connecting_funcs = {}
|
|
|
|
grid_width = 4
|
|
|
|
i = 0
|
|
|
|
j = 0
|
2017-12-27 02:58:55 +01:00
|
|
|
k = 0
|
|
|
|
l = 0
|
|
|
|
# Dynamically layout reactive_buttons and connect them to the visualisation effects
|
2017-12-18 21:50:27 +01:00
|
|
|
def connect_generator(effect):
|
|
|
|
def func():
|
|
|
|
visualizer.current_effect = effect
|
2017-12-27 02:58:55 +01:00
|
|
|
buttons[effect].setDown(True)
|
2017-12-18 21:50:27 +01:00
|
|
|
func.__name__ = effect
|
|
|
|
return func
|
|
|
|
# Where the magic happens
|
|
|
|
for effect in visualizer.effects:
|
2017-12-27 02:58:55 +01:00
|
|
|
if not effect in visualizer.non_reactive_effects:
|
|
|
|
connecting_funcs[effect] = connect_generator(effect)
|
|
|
|
buttons[effect] = QPushButton(effect)
|
|
|
|
buttons[effect].clicked.connect(connecting_funcs[effect])
|
|
|
|
reactive_button_grid.addWidget(buttons[effect], j, i)
|
|
|
|
i += 1
|
|
|
|
if i % grid_width == 0:
|
|
|
|
i = 0
|
|
|
|
j += 1
|
|
|
|
else:
|
|
|
|
connecting_funcs[effect] = connect_generator(effect)
|
|
|
|
buttons[effect] = QPushButton(effect)
|
|
|
|
buttons[effect].clicked.connect(connecting_funcs[effect])
|
|
|
|
non_reactive_button_grid.addWidget(buttons[effect], l, k)
|
|
|
|
k += 1
|
|
|
|
if k % grid_width == 0:
|
|
|
|
k = 0
|
|
|
|
l += 1
|
2017-12-18 21:50:27 +01:00
|
|
|
|
|
|
|
# ============================================== Set up frequency slider
|
|
|
|
# Frequency range label
|
|
|
|
label_slider = QLabel("Frequency Range")
|
|
|
|
# Frequency slider
|
|
|
|
def freq_slider_change(tick):
|
|
|
|
minf = freq_slider.tickValue(0)**2.0 * (config.MIC_RATE / 2.0)
|
|
|
|
maxf = freq_slider.tickValue(1)**2.0 * (config.MIC_RATE / 2.0)
|
|
|
|
t = 'Frequency range: {:.0f} - {:.0f} Hz'.format(minf, maxf)
|
|
|
|
freq_label.setText(t)
|
|
|
|
config.MIN_FREQUENCY = minf
|
|
|
|
config.MAX_FREQUENCY = maxf
|
|
|
|
dsp.create_mel_bank()
|
|
|
|
def set_freq_min():
|
|
|
|
config.MIN_FREQUENCY = freq_slider.start()
|
|
|
|
dsp.create_mel_bank()
|
|
|
|
def set_freq_max():
|
|
|
|
config.MAX_FREQUENCY = freq_slider.end()
|
|
|
|
dsp.create_mel_bank()
|
|
|
|
freq_slider = QRangeSlider()
|
|
|
|
freq_slider.show()
|
|
|
|
freq_slider.setMin(0)
|
|
|
|
freq_slider.setMax(20000)
|
|
|
|
freq_slider.setRange(config.MIN_FREQUENCY, config.MAX_FREQUENCY)
|
|
|
|
freq_slider.setBackgroundStyle('background: qlineargradient(x1:0, y1:0, x2:0, y2:1, stop:0 #222, stop:1 #333);')
|
|
|
|
freq_slider.setSpanStyle('background: qlineargradient(x1:0, y1:0, x2:0, y2:1, stop:0 #282, stop:1 #393);')
|
|
|
|
freq_slider.setDrawValues(True)
|
|
|
|
freq_slider.endValueChanged.connect(set_freq_max)
|
|
|
|
freq_slider.startValueChanged.connect(set_freq_min)
|
|
|
|
freq_slider.setStyleSheet("""
|
|
|
|
QRangeSlider * {
|
|
|
|
border: 0px;
|
|
|
|
padding: 0px;
|
|
|
|
}
|
|
|
|
QRangeSlider > QSplitter::handle {
|
|
|
|
background: #fff;
|
|
|
|
}
|
|
|
|
QRangeSlider > QSplitter::handle:vertical {
|
|
|
|
height: 3px;
|
|
|
|
}
|
|
|
|
QRangeSlider > QSplitter::handle:pressed {
|
|
|
|
background: #ca5;
|
|
|
|
}
|
|
|
|
""")
|
|
|
|
|
|
|
|
# ============================================ Set up option tabs layout
|
|
|
|
label_options = QLabel("Effect Options")
|
|
|
|
opts_tabs = QTabWidget()
|
|
|
|
# Dynamically set up tabs
|
|
|
|
tabs = {}
|
|
|
|
grid_layouts = {}
|
|
|
|
self.grid_layout_widgets = {}
|
|
|
|
options = visualizer.effect_opts.keys()
|
|
|
|
for effect in visualizer.effects:
|
|
|
|
# Make the tab
|
|
|
|
self.grid_layout_widgets[effect] = {}
|
|
|
|
tabs[effect] = QWidget()
|
|
|
|
grid_layouts[effect] = QGridLayout()
|
|
|
|
tabs[effect].setLayout(grid_layouts[effect])
|
|
|
|
opts_tabs.addTab(tabs[effect],effect)
|
|
|
|
# These functions make functions for the dynamic ui generation
|
|
|
|
# YOU WANT-A DYNAMIC I GIVE-A YOU DYNAMIC!
|
|
|
|
def gen_slider_valuechanger(effect, key):
|
|
|
|
def func():
|
|
|
|
visualizer.effect_opts[effect][key] = self.grid_layout_widgets[effect][key].value()
|
|
|
|
return func
|
|
|
|
def gen_float_slider_valuechanger(effect, key):
|
|
|
|
def func():
|
|
|
|
visualizer.effect_opts[effect][key] = self.grid_layout_widgets[effect][key].slider_value
|
|
|
|
return func
|
|
|
|
def gen_combobox_valuechanger(effect, key):
|
|
|
|
def func():
|
|
|
|
visualizer.effect_opts[effect][key] = self.grid_layout_widgets[effect][key].currentText()
|
|
|
|
return func
|
|
|
|
def gen_checkbox_valuechanger(effect, key):
|
|
|
|
def func():
|
|
|
|
visualizer.effect_opts[effect][key] = self.grid_layout_widgets[effect][key].isChecked()
|
|
|
|
return func
|
|
|
|
# Dynamically generate ui for settings
|
|
|
|
if effect in visualizer.dynamic_effects_config:
|
|
|
|
i = 0
|
|
|
|
connecting_funcs[effect] = {}
|
2017-12-27 02:58:55 +01:00
|
|
|
for key, label, ui_element, *opts in visualizer.dynamic_effects_config[effect]:
|
|
|
|
if opts: # neatest way ^^^^^ i could think of to unpack and handle an unknown number of opts (if any)
|
|
|
|
opts = opts[0]
|
2017-12-18 21:50:27 +01:00
|
|
|
if ui_element == "slider":
|
|
|
|
connecting_funcs[effect][key] = gen_slider_valuechanger(effect, key)
|
|
|
|
self.grid_layout_widgets[effect][key] = QSlider(Qt.Horizontal)
|
|
|
|
self.grid_layout_widgets[effect][key].setMinimum(opts[0])
|
|
|
|
self.grid_layout_widgets[effect][key].setMaximum(opts[1])
|
2017-12-27 02:58:55 +01:00
|
|
|
self.grid_layout_widgets[effect][key].setValue(visualizer.effect_opts[effect][key])
|
2017-12-18 21:50:27 +01:00
|
|
|
self.grid_layout_widgets[effect][key].valueChanged.connect(
|
|
|
|
connecting_funcs[effect][key])
|
|
|
|
elif ui_element == "float_slider":
|
|
|
|
connecting_funcs[effect][key] = gen_float_slider_valuechanger(effect, key)
|
2017-12-27 02:58:55 +01:00
|
|
|
self.grid_layout_widgets[effect][key] = QFloatSlider(*opts, visualizer.effect_opts[effect][key])
|
|
|
|
self.grid_layout_widgets[effect][key].setValue(visualizer.effect_opts[effect][key])
|
2017-12-18 21:50:27 +01:00
|
|
|
self.grid_layout_widgets[effect][key].valueChanged.connect(
|
|
|
|
connecting_funcs[effect][key])
|
|
|
|
elif ui_element == "dropdown":
|
|
|
|
connecting_funcs[effect][key] = gen_combobox_valuechanger(effect, key)
|
|
|
|
self.grid_layout_widgets[effect][key] = QComboBox()
|
2017-12-27 02:58:55 +01:00
|
|
|
self.grid_layout_widgets[effect][key].addItems(opts)
|
2017-12-18 21:50:27 +01:00
|
|
|
self.grid_layout_widgets[effect][key].currentIndexChanged.connect(
|
|
|
|
connecting_funcs[effect][key])
|
|
|
|
elif ui_element == "checkbox":
|
|
|
|
connecting_funcs[effect][key] = gen_checkbox_valuechanger(effect, key)
|
|
|
|
self.grid_layout_widgets[effect][key] = QCheckBox()
|
2017-12-27 02:58:55 +01:00
|
|
|
self.grid_layout_widgets[effect][key].setCheckState(visualizer.effect_opts[effect][key])
|
2017-12-18 21:50:27 +01:00
|
|
|
self.grid_layout_widgets[effect][key].stateChanged.connect(
|
|
|
|
connecting_funcs[effect][key])
|
2017-12-27 02:58:55 +01:00
|
|
|
grid_layouts[effect].addWidget(QLabel(label),i,0)
|
|
|
|
grid_layouts[effect].addWidget(self.grid_layout_widgets[effect][key],i,1)
|
2017-12-18 21:50:27 +01:00
|
|
|
i += 1
|
|
|
|
#visualizer.effect_settings[effect]
|
|
|
|
else:
|
|
|
|
grid_layouts[effect].addWidget(QLabel("No customisable options for this effect :("),0,0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# ============================================= Add layouts into wrapper
|
|
|
|
self.setLayout(wrapper)
|
|
|
|
wrapper.addLayout(labels_layout)
|
|
|
|
wrapper.addWidget(graph_view)
|
2017-12-27 02:58:55 +01:00
|
|
|
wrapper.addWidget(label_reactive)
|
|
|
|
wrapper.addLayout(reactive_button_grid)
|
|
|
|
wrapper.addWidget(label_non_reactive)
|
|
|
|
wrapper.addLayout(non_reactive_button_grid)
|
2017-12-18 21:50:27 +01:00
|
|
|
wrapper.addWidget(label_slider)
|
|
|
|
wrapper.addWidget(freq_slider)
|
|
|
|
wrapper.addWidget(label_options)
|
|
|
|
wrapper.addWidget(opts_tabs)
|
|
|
|
self.show()
|
|
|
|
|
|
|
|
|
|
|
|
def frames_per_second():
|
|
|
|
"""Return the estimated frames per second
|
|
|
|
|
|
|
|
Returns the current estimate for frames-per-second (FPS).
|
|
|
|
FPS is estimated by measured the amount of time that has elapsed since
|
|
|
|
this function was previously called. The FPS estimate is low-pass filtered
|
|
|
|
to reduce noise.
|
|
|
|
|
|
|
|
This function is intended to be called one time for every iteration of
|
|
|
|
the program's main loop.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
fps : float
|
|
|
|
Estimated frames-per-second. This value is low-pass filtered
|
|
|
|
to reduce noise.
|
|
|
|
"""
|
|
|
|
global _time_prev, _fps
|
|
|
|
time_now = time.time() * 1000.0
|
|
|
|
dt = time_now - _time_prev
|
|
|
|
_time_prev = time_now
|
|
|
|
if dt == 0.0:
|
|
|
|
return _fps.value
|
|
|
|
return _fps.update(1000.0 / dt)
|
|
|
|
|
|
|
|
def memoize(function):
|
|
|
|
"""Provides a decorator for memoizing functions"""
|
|
|
|
from functools import wraps
|
|
|
|
memo = {}
|
|
|
|
|
|
|
|
@wraps(function)
|
|
|
|
def wrapper(*args):
|
|
|
|
if args in memo:
|
|
|
|
return memo[args]
|
|
|
|
else:
|
|
|
|
rv = function(*args)
|
|
|
|
memo[args] = rv
|
|
|
|
return rv
|
|
|
|
return wrapper
|
|
|
|
|
|
|
|
@memoize
|
|
|
|
def _normalized_linspace(size):
|
|
|
|
return np.linspace(0, 1, size)
|
|
|
|
|
|
|
|
def interpolate(y, new_length):
|
|
|
|
"""Intelligently resizes the array by linearly interpolating the values
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
y : np.array
|
|
|
|
Array that should be resized
|
|
|
|
|
|
|
|
new_length : int
|
|
|
|
The length of the new interpolated array
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
z : np.array
|
|
|
|
New array with length of new_length that contains the interpolated
|
|
|
|
values of y.
|
|
|
|
"""
|
|
|
|
if len(y) == new_length:
|
|
|
|
return y
|
|
|
|
x_old = _normalized_linspace(len(y))
|
|
|
|
x_new = _normalized_linspace(new_length)
|
|
|
|
z = np.interp(x_new, x_old, y)
|
|
|
|
return z
|
|
|
|
|
|
|
|
def microphone_update(audio_samples):
|
|
|
|
global y_roll, prev_rms, prev_exp, prev_fps_update
|
|
|
|
# Normalize samples between 0 and 1
|
|
|
|
y = audio_samples / 2.0**15
|
|
|
|
# Construct a rolling window of audio samples
|
|
|
|
y_roll[:-1] = y_roll[1:]
|
|
|
|
y_roll[-1, :] = np.copy(y)
|
|
|
|
y_data = np.concatenate(y_roll, axis=0).astype(np.float32)
|
|
|
|
vol = np.max(np.abs(y_data))
|
2017-12-27 02:58:55 +01:00
|
|
|
# Transform audio input into the frequency domain
|
|
|
|
N = len(y_data)
|
|
|
|
N_zeros = 2**int(np.ceil(np.log2(N))) - N
|
|
|
|
# Pad with zeros until the next power of two
|
|
|
|
y_data *= fft_window
|
|
|
|
y_padded = np.pad(y_data, (0, N_zeros), mode='constant')
|
|
|
|
YS = np.abs(np.fft.rfft(y_padded)[:N // 2])
|
|
|
|
# Construct a Mel filterbank from the FFT data
|
|
|
|
mel = np.atleast_2d(YS).T * dsp.mel_y.T
|
|
|
|
# Scale data to values more suitable for visualization
|
|
|
|
mel = np.sum(mel, axis=0)
|
2017-12-28 02:25:16 +01:00
|
|
|
mel = mel**0.7
|
2017-12-27 02:58:55 +01:00
|
|
|
# Gain normalization
|
|
|
|
mel_gain.update(np.max(gaussian_filter1d(mel, sigma=1.0)))
|
|
|
|
mel /= mel_gain.value
|
|
|
|
mel = mel_smoothing.update(mel)
|
|
|
|
# Map filterbank output onto LED strip
|
|
|
|
led.pixels = visualizer.get_vis(mel, audio_input = True if vol > config.MIN_VOLUME_THRESHOLD else False)
|
|
|
|
led.update()
|
|
|
|
if config.USE_GUI:
|
|
|
|
x = np.linspace(config.MIN_FREQUENCY, config.MAX_FREQUENCY, len(mel))
|
|
|
|
if vol < config.MIN_VOLUME_THRESHOLD:
|
2017-12-18 21:50:27 +01:00
|
|
|
gui.label_error.setText("No audio input. Volume below threshold.")
|
2017-12-27 02:58:55 +01:00
|
|
|
gui.mel_curve.setData(x=x, y=[0 for i in range(config.N_FFT_BINS)])
|
2017-12-18 21:50:27 +01:00
|
|
|
else:
|
|
|
|
# Plot filterbank output
|
|
|
|
gui.mel_curve.setData(x=x, y=fft_plot_filter.update(mel))
|
|
|
|
gui.label_error.setText("")
|
|
|
|
fps = frames_per_second()
|
|
|
|
if time.time() - 0.5 > prev_fps_update:
|
|
|
|
prev_fps_update = time.time()
|
|
|
|
app.processEvents()
|
|
|
|
# Plot the color channels
|
|
|
|
gui.r_curve.setData(y=led.pixels[0])
|
|
|
|
gui.g_curve.setData(y=led.pixels[1])
|
|
|
|
gui.b_curve.setData(y=led.pixels[2])
|
|
|
|
# Update fps counter
|
|
|
|
gui.label_fps.setText('{:.0f} / {:.0f} FPS'.format(fps, config.FPS))
|
2017-12-27 02:58:55 +01:00
|
|
|
elif vol < config.MIN_VOLUME_THRESHOLD:
|
|
|
|
print("No audio input. Volume below threshold. Volume: {}".format(vol))
|
2017-12-18 21:50:27 +01:00
|
|
|
if config.DISPLAY_FPS:
|
|
|
|
print('FPS {:.0f} / {:.0f}'.format(fps, config.FPS))
|
|
|
|
|
|
|
|
# Initialise visualiser and GUI
|
|
|
|
visualizer = Visualizer()
|
|
|
|
if config.USE_GUI:
|
|
|
|
# Create GUI window
|
|
|
|
app = QApplication([])
|
|
|
|
app.setApplicationName('Visualization')
|
|
|
|
gui = GUI()
|
|
|
|
app.processEvents()
|
|
|
|
|
|
|
|
# Initialise filter stuff
|
|
|
|
fft_plot_filter = dsp.ExpFilter(np.tile(1e-1, config.N_FFT_BINS),
|
|
|
|
alpha_decay=0.5, alpha_rise=0.99)
|
|
|
|
mel_gain = dsp.ExpFilter(np.tile(1e-1, config.N_FFT_BINS),
|
|
|
|
alpha_decay=0.01, alpha_rise=0.99)
|
|
|
|
mel_smoothing = dsp.ExpFilter(np.tile(1e-1, config.N_FFT_BINS),
|
|
|
|
alpha_decay=0.5, alpha_rise=0.99)
|
|
|
|
volume = dsp.ExpFilter(config.MIN_VOLUME_THRESHOLD,
|
|
|
|
alpha_decay=0.02, alpha_rise=0.02)
|
|
|
|
fft_window = np.hamming(int(config.MIC_RATE / config.FPS) * config.N_ROLLING_HISTORY)
|
|
|
|
prev_fps_update = time.time()
|
|
|
|
|
|
|
|
# Initialise more filter stuff
|
|
|
|
r_filt = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS // 2),
|
|
|
|
alpha_decay=0.2, alpha_rise=0.99)
|
|
|
|
g_filt = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS // 2),
|
|
|
|
alpha_decay=0.05, alpha_rise=0.3)
|
|
|
|
b_filt = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS // 2),
|
|
|
|
alpha_decay=0.1, alpha_rise=0.5)
|
|
|
|
common_mode = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS // 2),
|
|
|
|
alpha_decay=0.99, alpha_rise=0.01)
|
|
|
|
p_filt = dsp.ExpFilter(np.tile(1, (3, config.N_PIXELS // 2)),
|
|
|
|
alpha_decay=0.1, alpha_rise=0.99)
|
|
|
|
p = np.tile(1.0, (3, config.N_PIXELS // 2))
|
|
|
|
gain = dsp.ExpFilter(np.tile(0.01, config.N_FFT_BINS),
|
|
|
|
alpha_decay=0.001, alpha_rise=0.99)
|
|
|
|
|
|
|
|
# The previous time that the frames_per_second() function was called
|
|
|
|
_time_prev = time.time() * 1000.0
|
|
|
|
# The low-pass filter used to estimate frames-per-second
|
|
|
|
_fps = dsp.ExpFilter(val=config.FPS, alpha_decay=0.2, alpha_rise=0.2)
|
|
|
|
|
|
|
|
|
|
|
|
# Number of audio samples to read every time frame
|
|
|
|
samples_per_frame = int(config.MIC_RATE / config.FPS)
|
|
|
|
# Array containing the rolling audio sample window
|
|
|
|
y_roll = np.random.rand(config.N_ROLLING_HISTORY, samples_per_frame) / 1e16
|
|
|
|
# Initialize LEDs
|
|
|
|
led.update()
|
|
|
|
# Start listening to live audio stream
|
|
|
|
microphone.start_stream(microphone_update)
|