audio-reactive-led-strip/python/visualization.py

948 lines
50 KiB
Python
Raw Normal View History

from __future__ import print_function
from __future__ import division
from scipy.ndimage.filters import gaussian_filter1d
from collections import deque
import time
import sys
import numpy as np
import config
import microphone
import dsp
import led
import random
if config.USE_GUI:
from qrangeslider import QRangeSlider
from qfloatslider import QFloatSlider
import pyqtgraph as pg
from PyQt5.QtCore import *
from PyQt5.QtWidgets import *
class Visualizer():
def __init__(self):
# Dictionary linking names of effects to their respective functions
self.effects = {"Scroll":self.visualize_scroll,
"Energy":self.visualize_energy,
"Spectrum":self.visualize_spectrum,
"Power":self.visualize_power,
"Wavelength":self.visualize_wavelength,
"Beat":self.visualize_beat,
"Wave":self.visualize_wave,
"Bars":self.visualize_bars,
"Single":self.visualize_single,
"Fade":self.visualize_fade,
"Gradient":self.visualize_gradient}
#"Auto":self.visualize_auto}
# Collection of different colour in RGB format
self.colors = {"Red":(255,0,0),
"Orange":(255,40,0),
"Yellow":(255,255,0),
"Green":(0,255,0),
"Blue":(0,0,255),
"Light blue":(1,247,161),
"Purple":(80,5,252),
"Pink":(255,0,178),
"White":(255,255,255)}
# List of all the visualisation effects that aren't audio reactive.
# These will still display when no music is playing.
self.non_reactive_effects = ["Single", "Gradient", "Fade"]
# List of names of multicolour gradients, used in various effects
self.multicolor_mode_names = ["Spectral",
"Dancefloor",
"Brilliance",
"Jungle",
"Sky",
"Acid",
"Ocean"]
# The currently selected effect
self.current_effect = "Wavelength"
# Setup for frequency detection algorithm
self.freq_channel_history = 40
self.beat_count = 0
self.freq_channels = [deque(maxlen=self.freq_channel_history) for i in range(config.N_FFT_BINS)]
self.prev_output = np.array([[0 for i in range(config.N_PIXELS)] for i in range(3)])
self.prev_spectrum = [0 for i in range(config.N_PIXELS//2)]
self.current_freq_detects = {"beat":False,
"low":False,
"mid":False,
"high":False}
self.prev_freq_detects = {"beat":0,
"low":0,
"mid":0,
"high":0}
self.detection_ranges = {"beat":(0,int(config.N_FFT_BINS*0.13)),
"low":(int(config.N_FFT_BINS*0.15),int(config.N_FFT_BINS*0.4)),
"mid":(int(config.N_FFT_BINS*0.4),int(config.N_FFT_BINS*0.7)),
"high":(int(config.N_FFT_BINS*0.8),int(config.N_FFT_BINS))}
self.min_detect_amplitude = {"beat":0.7,
"low":0.5,
"mid":0.3,
"high":0.3}
self.min_percent_diff = {"beat":100,
"low":100,
"mid":50,
"high":30}
# Configurable options for effects go in this dictionary.
# Usage: self.effect_opts[effect][option]
self.effect_opts = {"Energy":{"blur": 1, # Amount of blur to apply
"scale":0.9}, # Width of effect on strip
"Wave":{"color_wave": "Red", # Colour of moving bit
"color_flash": "White", # Colour of flashy bit
"wipe_len":5, # Initial length of colour bit after beat
"decay": 0.7, # How quickly the flash fades away
"wipe_speed":2}, # Number of pixels added to colour bit every frame
"Wavelength":{"roll_speed": 0, # How fast (if at all) to cycle colour overlay across strip
"color_mode": "Spectral", # Colour gradient to display
"mirror": False, # Reflect output down centre of strip
"reverse_grad": False, # Flip (LR) gradient
"reverse_roll": False, # Reverse movement of gradient roll
"blur": 3.0, # Amount of blur to apply
"flip_lr":False}, # Flip output left-right
"Scroll":{"decay": 0.95, # How quickly the colour fades away as it moves
"blur": 0.2}, # Amount of blur to apply
"Power":{"color_mode": "Spectral", # Colour gradient to display
"s_count": config.N_PIXELS//6, # Initial number of sparks
"s_color": "White", # Color of sparks
"mirror": False, # Mirror output down central axis
"flip_lr":False}, # Flip output left-right
"Single":{"color": "Red"}, # Static color to show
"Beat":{"color": "Red", # Colour of beat flash
"decay": 0.7}, # How quickly the flash fades away
"Bars":{"resolution":4, # Number of "bars"
"color_mode":"Spectral", # Multicolour mode to use
"roll_speed":0, # How fast (if at all) to cycle colour colours across strip
"mirror": False, # Mirror down centre of strip
#"reverse_grad": False, # Flip (LR) gradient
"reverse_roll": False, # Reverse movement of gradient roll
"flip_lr":False}, # Flip output left-right
"Gradient":{"color_mode":"Spectral", # Colour gradient to display
"roll_speed": 0, # How fast (if at all) to cycle colour colours across strip
"mirror": False, # Mirror gradient down central axis
"reverse": False}, # Reverse movement of gradient
"Fade":{"color_mode":"Spectral", # Colour gradient to fade through
"roll_speed": 1, # How fast (if at all) to fade through colours
"reverse": False} # Reverse "direction" of fade (r->g->b or r<-g<-b)
}
# Configurations for dynamic ui generation. Effect options can be changed by widgets created at runtime,
# meaning that you don't need to worry about the user interface - it's all done for you. All you need to
# do is add items to this dict below.
#
# First line of code below explained (as an example):
# "Energy" is the visualization we're doing options for
# "blur" is the key in the options dict (self.effect_opts["Energy"]["blur"])
# "Blur" is the string we show on the GUI next to the slider
# "float_slider" is the GUI element we want to use
# (0.1,4.0,0.1) is a tuple containing all the details for setting up the slider (see above)
#
# Each effect key points to a list. Each list contains lists giving config for each option.
# Syntax: effect:[key, label_text, ui_element, opts]
# effect - the effect which you want to change options for. MUST have a key in self.effect_opts
# key - the key of thing you want to be changed. MUST be in self.effect_opts[effect], otherwise it won't work.
# label - the text displayed on the ui
# ui_element - how you want the variable to be changed
# opts - options for the ui element. Must be a tuple.
# UI Elements + opts:
# slider, (min, max, interval) (for integer values in a given range)
# float_slider, (min, max, interval) (for floating point values in a given range)
# checkbox, () (for True/False values)
# dropdown, (dict or list) (dict/list, example see below. Keys will be displayed in the dropdown if dict, otherwise just list items)
#
# Hope this clears things up a bit for you! GUI has never been easier..? The reason for doing this is
# 1 - To make it easy to add options to your effects for the user
# 2 - To give a consistent GUI for the user. If every options page was set out differently it would all be a mess
self.dynamic_effects_config = {"Energy":[["blur", "Blur", "float_slider", (0.1,4.0,0.1)],
["scale", "Scale", "float_slider", (0.4,1.0,0.05)]],
"Wave":[["color_flash", "Flash Color", "dropdown", self.colors],
["color_wave", "Wave Color", "dropdown", self.colors],
["wipe_len", "Wave Start Length", "slider", (0,config.N_PIXELS//4,1)],
["wipe_speed", "Wave Speed", "slider", (1,10,1)],
["decay", "Flash Decay", "float_slider", (0.1,1.0,0.05)]],
"Wavelength":[["color_mode", "Color Mode", "dropdown", self.multicolor_mode_names],
["roll_speed", "Roll Speed", "slider", (0,8,1)],
["blur", "Blur", "float_slider", (0.1,4.0,0.1)],
["mirror", "Mirror", "checkbox"],
["reverse_grad", "Reverse Gradient", "checkbox"],
["reverse_roll", "Reverse Roll", "checkbox"],
["flip_lr", "Flip LR", "checkbox"]],
"Scroll":[["blur", "Blur", "float_slider", (0.05,4.0,0.05)],
["decay", "Decay", "float_slider", (0.95,1.0,0.005)]],
"Power":[["color_mode", "Color Mode", "dropdown", self.multicolor_mode_names],
["s_color", "Spark Color ", "dropdown", self.colors],
["s_count", "Spark Amount", "slider", (0,config.N_PIXELS//6,1)],
["mirror", "Mirror", "checkbox"],
["flip_lr", "Flip LR", "checkbox"]],
"Single":[["color", "Color", "dropdown", self.colors]],
"Beat":[["color", "Color", "dropdown", self.colors],
["decay", "Flash Decay", "float_slider", (0.3,0.98,0.005)]],
"Bars":[["color_mode", "Color Mode", "dropdown", self.multicolor_mode_names],
["resolution", "Resolution", "slider", (1, config.N_FFT_BINS, 1)],
["roll_speed", "Roll Speed", "slider", (0,8,1)],
["flip_lr", "Flip LR", "checkbox"],
["mirror", "Mirror", "checkbox"],
["reverse_roll", "Reverse Roll", "checkbox"]],
"Gradient":[["color_mode", "Color Mode", "dropdown", self.multicolor_mode_names],
["roll_speed", "Roll Speed", "slider", (0,8,1)],
["mirror", "Mirror", "checkbox"],
["reverse", "Reverse", "checkbox"]],
"Fade":[["color_mode", "Color Mode", "dropdown", self.multicolor_mode_names],
["roll_speed", "Fade Speed", "slider", (0,8,1)],
["reverse", "Reverse", "checkbox"]]
}
# Setup for latency timer
self.latency_deque = deque(maxlen=10)
# Setup for "Wave" (don't change these)
self.wave_wipe_count = 0
# Setup for "Power" (don't change these)
self.power_indexes = []
self.power_brightness = 0
# Setup for multicolour modes (don't mess with this either unless you want to add in your own multicolour modes)
# If there's a multicolour mode you would like to see, let me know on GitHub!
self.multicolor_modes = {}
# chunks of colour gradients
_blank_overlay = np.zeros((3,config.N_PIXELS))
# used to construct rgb overlay. [0-255,255...] whole length of strip
_gradient_whole = [int(i*255/(config.N_PIXELS//2)) for i in range(config.N_PIXELS//2)] +\
[255 for i in range(config.N_PIXELS//2)]
# also used to make bits and pieces. [0-255], 1/2 length of strip
_alt_gradient_half = [int(i*255/(config.N_PIXELS//2)) for i in range(config.N_PIXELS//2)]
# used to construct rgb overlay. [0-255,255...] 1/2 length of strip
_gradient_half = _gradient_whole[::2]
# Spectral colour mode
self.multicolor_modes["Spectral"] = np.zeros((3,config.N_PIXELS))
self.multicolor_modes["Spectral"][2, :config.N_PIXELS//2] = _gradient_half[::-1]
self.multicolor_modes["Spectral"][1, :] = _gradient_half + _gradient_half[::-1]
self.multicolor_modes["Spectral"][0, :] = np.flipud(self.multicolor_modes["Spectral"][2])
# Dancefloor colour mode
self.multicolor_modes["Dancefloor"] = np.zeros((3,config.N_PIXELS))
self.multicolor_modes["Dancefloor"][2, :] = _gradient_whole[::-1]
self.multicolor_modes["Dancefloor"][0, :] = _gradient_whole
# Brilliance colour mode
self.multicolor_modes["Brilliance"] = np.zeros((3,config.N_PIXELS))
self.multicolor_modes["Brilliance"][2, :] = _gradient_whole[::-1]
self.multicolor_modes["Brilliance"][1, :] = 255
self.multicolor_modes["Brilliance"][0, :] = _gradient_whole
# Jungle colour mode
self.multicolor_modes["Jungle"] = np.zeros((3,config.N_PIXELS))
self.multicolor_modes["Jungle"][1, :] = _gradient_whole[::-1]
self.multicolor_modes["Jungle"][0, :] = _gradient_whole
# Sky colour mode
self.multicolor_modes["Sky"] = np.zeros((3,config.N_PIXELS))
self.multicolor_modes["Sky"][1, :config.N_PIXELS//2] = _alt_gradient_half[::-1]
self.multicolor_modes["Sky"][0, config.N_PIXELS//2:] = _alt_gradient_half
self.multicolor_modes["Sky"][2, :] = 255
# Acid colour mode
self.multicolor_modes["Acid"] = np.zeros((3,config.N_PIXELS))
self.multicolor_modes["Acid"][2, :config.N_PIXELS//2] = _alt_gradient_half[::-1]
self.multicolor_modes["Acid"][1, :] = 255
self.multicolor_modes["Acid"][0, config.N_PIXELS//2:] = _alt_gradient_half
# Ocean colour mode
self.multicolor_modes["Ocean"] = np.zeros((3,config.N_PIXELS))
self.multicolor_modes["Ocean"][1, :] = _gradient_whole
self.multicolor_modes["Ocean"][2, :] = _gradient_whole[::-1]
for i in self.multicolor_modes:
self.multicolor_modes[i] = np.concatenate((self.multicolor_modes[i][:, ::-1],
self.multicolor_modes[i]), axis=1)
def get_vis(self, y, audio_input):
self.update_freq_channels(y)
self.detect_freqs()
time1 = time.time()
if audio_input:
self.prev_output = np.copy(self.effects[self.current_effect](y))
elif self.current_effect in self.non_reactive_effects:
self.prev_output = np.copy(self.effects[self.current_effect](y))
else:
self.prev_output = np.multiply(self.prev_output, 0.95)
time2 = time.time()
self.latency_deque.append(1000*(time2-time1))
if config.USE_GUI:
gui.label_latency.setText("{} ms Processing Latency ".format(int(sum(self.latency_deque)/len(self.latency_deque))))
return self.prev_output
def _split_equal(self, value, parts):
value = float(value)
return [int(round(i*value/parts)) for i in range(1,parts+1)]
def update_freq_channels(self, y):
for i in range(len(y)):
self.freq_channels[i].appendleft(y[i])
def detect_freqs(self):
"""
Function that updates current_freq_detects. Any visualisation algorithm can check if
there is currently a beat, low, mid, or high by querying the self.current_freq_detects dict.
"""
channel_avgs = []
differences = []
for i in range(config.N_FFT_BINS):
channel_avgs.append(sum(self.freq_channels[i])/len(self.freq_channels[i]))
differences.append(((self.freq_channels[i][0]-channel_avgs[i])*100)//channel_avgs[i])
for i in ["beat", "low", "mid", "high"]:
if any(differences[j] >= self.min_percent_diff[i]\
and self.freq_channels[j][0] >= self.min_detect_amplitude[i]\
for j in range(*self.detection_ranges[i]))\
and (time.time() - self.prev_freq_detects[i] > 0.1)\
and len(self.freq_channels[0]) == self.freq_channel_history:
self.prev_freq_detects[i] = time.time()
self.current_freq_detects[i] = True
#print(i)
else:
self.current_freq_detects[i] = False
def visualize_scroll(self, y):
"""Effect that originates in the center and scrolls outwards"""
global p
y = y**2.0
gain.update(y)
y /= gain.value
y *= 255.0
r = int(np.max(y[:len(y) // 3]))
g = int(np.max(y[len(y) // 3: 2 * len(y) // 3]))
b = int(np.max(y[2 * len(y) // 3:]))
# Scrolling effect window
p[:, 1:] = p[:, :-1]
p *= self.effect_opts["Scroll"]["decay"]
p = gaussian_filter1d(p, sigma=self.effect_opts["Scroll"]["blur"])
# Create new color originating at the center
p[0, 0] = r
p[1, 0] = g
p[2, 0] = b
# Update the LED strip
return np.concatenate((p[:, ::-1], p), axis=1)
def visualize_energy(self, y):
"""Effect that expands from the center with increasing sound energy"""
global p
y = np.copy(y)
gain.update(y)
y /= gain.value
scale = self.effect_opts["Energy"]["scale"]
# Scale by the width of the LED strip
y *= float((config.N_PIXELS * scale) - 1)
# Map color channels according to energy in the different freq bands
r = int(np.mean(y[:len(y) // 3]**scale))
g = int(np.mean(y[len(y) // 3: 2 * len(y) // 3]**scale))
b = int(np.mean(y[2 * len(y) // 3:]**scale))
# Assign color to different frequency regions
p[0, :r] = 255.0
p[0, r:] = 0.0
p[1, :g] = 255.0
p[1, g:] = 0.0
p[2, :b] = 255.0
p[2, b:] = 0.0
p_filt.update(p)
p = np.round(p_filt.value)
# Apply blur to smooth the edges
p[0, :] = gaussian_filter1d(p[0, :], sigma=self.effect_opts["Energy"]["blur"])
p[1, :] = gaussian_filter1d(p[1, :], sigma=self.effect_opts["Energy"]["blur"])
p[2, :] = gaussian_filter1d(p[2, :], sigma=self.effect_opts["Energy"]["blur"])
# Set the new pixel value
return np.concatenate((p[:, ::-1], p), axis=1)
def visualize_wavelength(self, y):
y = np.copy(interpolate(y, config.N_PIXELS // 2))
common_mode.update(y)
diff = y - self.prev_spectrum
self.prev_spectrum = np.copy(y)
# Color channel mappings
r = r_filt.update(y - common_mode.value)
#g = np.abs(diff)
b = b_filt.update(np.copy(y))
r = np.array([j for i in zip(r,r) for j in i])
output = np.array([self.multicolor_modes[self.effect_opts["Wavelength"]["color_mode"]][0][
(config.N_PIXELS if self.effect_opts["Wavelength"]["reverse_grad"] else 0):
(None if self.effect_opts["Wavelength"]["reverse_grad"] else config.N_PIXELS):]*r,
self.multicolor_modes[self.effect_opts["Wavelength"]["color_mode"]][1][
(config.N_PIXELS if self.effect_opts["Wavelength"]["reverse_grad"] else 0):
(None if self.effect_opts["Wavelength"]["reverse_grad"] else config.N_PIXELS):]*r,
self.multicolor_modes[self.effect_opts["Wavelength"]["color_mode"]][2][
(config.N_PIXELS if self.effect_opts["Wavelength"]["reverse_grad"] else 0):
(None if self.effect_opts["Wavelength"]["reverse_grad"] else config.N_PIXELS):]*r])
#self.prev_spectrum = y
self.multicolor_modes[self.effect_opts["Wavelength"]["color_mode"]] = np.roll(
self.multicolor_modes[self.effect_opts["Wavelength"]["color_mode"]],
self.effect_opts["Wavelength"]["roll_speed"]*(-1 if self.effect_opts["Wavelength"]["reverse_roll"] else 1),
axis=1)
output[0] = gaussian_filter1d(output[0], sigma=self.effect_opts["Wavelength"]["blur"])
output[1] = gaussian_filter1d(output[1], sigma=self.effect_opts["Wavelength"]["blur"])
output[2] = gaussian_filter1d(output[2], sigma=self.effect_opts["Wavelength"]["blur"])
if self.effect_opts["Wavelength"]["flip_lr"]:
output = np.fliplr(output)
if self.effect_opts["Wavelength"]["mirror"]:
output = np.concatenate((output[:, ::-2], output[:, ::2]), axis=1)
return output
def visualize_spectrum(self, y):
"""Effect that maps the Mel filterbank frequencies onto the LED strip"""
global p
#print(len(y))
#print(y)
y = np.copy(interpolate(y, config.N_PIXELS // 2))
common_mode.update(y)
diff = y - self.prev_spectrum
self.prev_spectrum = np.copy(y)
# Color channel mappings
r = r_filt.update(y - common_mode.value)
g = np.abs(diff)
b = b_filt.update(np.copy(y))
# Mirror the color channels for symmetric output
r = np.concatenate((r[::-1], r))
g = np.concatenate((g[::-1], g))
b = np.concatenate((b[::-1], b))
output = np.array([r, g,b]) * 255
self.prev_spectrum = y
return output
def visualize_auto(self,y):
"""Automatically (intelligently?) cycle through effects"""
return self.visualize_beat(y) # real intelligent
def visualize_wave(self, y):
"""Effect that flashes to the beat with scrolling coloured bits"""
if self.current_freq_detects["beat"]:
output = np.zeros((3,config.N_PIXELS))
output[0][:]=self.colors[self.effect_opts["Wave"]["color_flash"]][0]
output[1][:]=self.colors[self.effect_opts["Wave"]["color_flash"]][1]
output[2][:]=self.colors[self.effect_opts["Wave"]["color_flash"]][2]
self.wave_wipe_count = self.effect_opts["Wave"]["wipe_len"]
else:
output = np.copy(self.prev_output)
#for i in range(len(self.prev_output)):
# output[i] = np.hsplit(self.prev_output[i],2)[0]
output = np.multiply(self.prev_output,self.effect_opts["Wave"]["decay"])
for i in range(self.wave_wipe_count):
output[0][i]=self.colors[self.effect_opts["Wave"]["color_wave"]][0]
output[0][-i]=self.colors[self.effect_opts["Wave"]["color_wave"]][0]
output[1][i]=self.colors[self.effect_opts["Wave"]["color_wave"]][1]
output[1][-i]=self.colors[self.effect_opts["Wave"]["color_wave"]][1]
output[2][i]=self.colors[self.effect_opts["Wave"]["color_wave"]][2]
output[2][-i]=self.colors[self.effect_opts["Wave"]["color_wave"]][2]
#output = np.concatenate([output,np.fliplr(output)], axis=1)
self.wave_wipe_count += self.effect_opts["Wave"]["wipe_speed"]
if self.wave_wipe_count > config.N_PIXELS//2:
self.wave_wipe_count = config.N_PIXELS//2
return output
def visualize_beat(self, y):
"""Effect that flashes to the beat"""
if self.current_freq_detects["beat"]:
output = np.zeros((3,config.N_PIXELS))
output[0][:]=self.colors[self.effect_opts["Beat"]["color"]][0]
output[1][:]=self.colors[self.effect_opts["Beat"]["color"]][1]
output[2][:]=self.colors[self.effect_opts["Beat"]["color"]][2]
else:
output = np.copy(self.prev_output)
output = np.multiply(self.prev_output,self.effect_opts["Beat"]["decay"])
return output
def visualize_bars(self, y):
# Bit of fiddling with the y values
y = np.copy(interpolate(y, config.N_PIXELS // 2))
common_mode.update(y)
self.prev_spectrum = np.copy(y)
# Color channel mappings
r = r_filt.update(y - common_mode.value)
r = np.array([j for i in zip(r,r) for j in i])
# Split y into [resulution] chunks and calculate the average of each
max_values = np.array([max(i) for i in np.array_split(r, self.effect_opts["Bars"]["resolution"])])
max_values = np.clip(max_values, 0, 1)
color_sets = []
for i in range(self.effect_opts["Bars"]["resolution"]):
# [r,g,b] values from a multicolour gradient array at [resulution] equally spaced intervals
color_sets.append([self.multicolor_modes[self.effect_opts["Bars"]["color_mode"]]\
[j][i*(config.N_PIXELS//self.effect_opts["Bars"]["resolution"])] for j in range(3)])
output = np.zeros((3,config.N_PIXELS))
chunks = np.array_split(output[0], self.effect_opts["Bars"]["resolution"])
n = 0
# Assign blocks with heights corresponding to max_values and colours from color_sets
for i in range(len(chunks)):
m = len(chunks[i])
for j in range(3):
output[j][n:n+m] = color_sets[i][j]*max_values[i]
n += m
self.multicolor_modes[self.effect_opts["Bars"]["color_mode"]] = np.roll(
self.multicolor_modes[self.effect_opts["Bars"]["color_mode"]],
self.effect_opts["Bars"]["roll_speed"]*(-1 if self.effect_opts["Bars"]["reverse_roll"] else 1),
axis=1)
if self.effect_opts["Bars"]["flip_lr"]:
output = np.fliplr(output)
if self.effect_opts["Bars"]["mirror"]:
output = np.concatenate((output[:, ::-2], output[:, ::2]), axis=1)
return output
def visualize_power(self, y):
#self.effect_opts["Power"]["color_mode"]
# Bit of fiddling with the y values
y = np.copy(interpolate(y, config.N_PIXELS // 2))
common_mode.update(y)
self.prev_spectrum = np.copy(y)
# Color channel mappings
r = r_filt.update(y - common_mode.value)
r = np.array([j for i in zip(r,r) for j in i])
output = np.array([self.multicolor_modes[self.effect_opts["Power"]["color_mode"]][0, :config.N_PIXELS]*r,
self.multicolor_modes[self.effect_opts["Power"]["color_mode"]][1, :config.N_PIXELS]*r,
self.multicolor_modes[self.effect_opts["Power"]["color_mode"]][2, :config.N_PIXELS]*r])
# if there's a high (eg clap):
if self.current_freq_detects["high"]:
self.power_brightness = 1.0
# Generate random indexes
self.power_indexes = random.sample(range(config.N_PIXELS), self.effect_opts["Power"]["s_count"])
#print("ye")
# Assign colour to the random indexes
for index in self.power_indexes:
output[0, index] = int(self.colors[self.effect_opts["Power"]["s_color"]][0]*self.power_brightness)
output[1, index] = int(self.colors[self.effect_opts["Power"]["s_color"]][1]*self.power_brightness)
output[2, index] = int(self.colors[self.effect_opts["Power"]["s_color"]][2]*self.power_brightness)
# Remove some of the indexes for next time
self.power_indexes = [i for i in self.power_indexes if i not in random.sample(self.power_indexes, len(self.power_indexes)//4)]
if len(self.power_indexes) <= 4:
self.power_indexes = []
# Fade the colour of the sparks out a bit for next time
if self.power_brightness > 0:
self.power_brightness -= 0.05
# Calculate length of bass bar based on max bass frequency volume and length of strip
strip_len = int((config.N_PIXELS//3)*max(y[:int(config.N_FFT_BINS*0.2)]))
# Add the bass bars into the output. Colour proportional to length
output[0][:strip_len] = self.multicolor_modes[self.effect_opts["Power"]["color_mode"]][0][strip_len]
output[1][:strip_len] = self.multicolor_modes[self.effect_opts["Power"]["color_mode"]][1][strip_len]
output[2][:strip_len] = self.multicolor_modes[self.effect_opts["Power"]["color_mode"]][2][strip_len]
if self.effect_opts["Power"]["flip_lr"]:
output = np.fliplr(output)
if self.effect_opts["Power"]["mirror"]:
output = np.concatenate((output[:, ::-2], output[:, ::2]), axis=1)
return output
def visualize_single(self, y):
"Displays a single colour, non audio reactive"
output = np.zeros((3,config.N_PIXELS))
output[0][:]=self.colors[self.effect_opts["Single"]["color"]][0]
output[1][:]=self.colors[self.effect_opts["Single"]["color"]][1]
output[2][:]=self.colors[self.effect_opts["Single"]["color"]][2]
return output
def visualize_gradient(self, y):
"Displays a multicolour gradient, non audio reactive"
output = np.array([self.multicolor_modes[self.effect_opts["Gradient"]["color_mode"]][0][:config.N_PIXELS],
self.multicolor_modes[self.effect_opts["Gradient"]["color_mode"]][1][:config.N_PIXELS],
self.multicolor_modes[self.effect_opts["Gradient"]["color_mode"]][2][:config.N_PIXELS]])
self.multicolor_modes[self.effect_opts["Gradient"]["color_mode"]] = np.roll(
self.multicolor_modes[self.effect_opts["Gradient"]["color_mode"]],
self.effect_opts["Gradient"]["roll_speed"]*(-1 if self.effect_opts["Gradient"]["reverse"] else 1),
axis=1)
if self.effect_opts["Gradient"]["mirror"]:
output = np.concatenate((output[:, ::-2], output[:, ::2]), axis=1)
return output
def visualize_fade(self, y):
"Fades through a multicolour gradient, non audio reactive"
output = [[self.multicolor_modes[self.effect_opts["Fade"]["color_mode"]][0][0] for i in range(config.N_PIXELS)],
[self.multicolor_modes[self.effect_opts["Fade"]["color_mode"]][1][0] for i in range(config.N_PIXELS)],
[self.multicolor_modes[self.effect_opts["Fade"]["color_mode"]][2][0] for i in range(config.N_PIXELS)]]
self.multicolor_modes[self.effect_opts["Fade"]["color_mode"]] = np.roll(
self.multicolor_modes[self.effect_opts["Fade"]["color_mode"]],
self.effect_opts["Fade"]["roll_speed"]*(-1 if self.effect_opts["Fade"]["reverse"] else 1),
axis=1)
return output
class GUI(QWidget):
def __init__(self):
super().__init__()
self.initUI()
def initUI(self):
# ==================================== Set up window and wrapping layout
self.setWindowTitle("Visualization")
wrapper = QVBoxLayout()
# ========================================== Set up FPS and error labels
labels_layout = QHBoxLayout()
self.label_error = QLabel("")
self.label_fps = QLabel("")
self.label_latency = QLabel("")
self.label_fps.setAlignment(Qt.AlignRight | Qt.AlignVCenter)
self.label_latency.setAlignment(Qt.AlignRight | Qt.AlignVCenter)
labels_layout.addWidget(self.label_error)
labels_layout.addStretch()
labels_layout.addWidget(self.label_latency)
labels_layout.addWidget(self.label_fps)
# ================================================== Set up graph layout
graph_view = pg.GraphicsView()
graph_layout = pg.GraphicsLayout(border=(100,100,100))
graph_view.setCentralItem(graph_layout)
# Mel filterbank plot
fft_plot = graph_layout.addPlot(title='Filterbank Output', colspan=3)
fft_plot.setRange(yRange=[-0.1, 1.2])
fft_plot.disableAutoRange(axis=pg.ViewBox.YAxis)
x_data = np.array(range(1, config.N_FFT_BINS + 1))
self.mel_curve = pg.PlotCurveItem()
self.mel_curve.setData(x=x_data, y=x_data*0)
fft_plot.addItem(self.mel_curve)
# Visualization plot
graph_layout.nextRow()
led_plot = graph_layout.addPlot(title='Visualization Output', colspan=3)
led_plot.setRange(yRange=[-5, 260])
led_plot.disableAutoRange(axis=pg.ViewBox.YAxis)
# Pen for each of the color channel curves
r_pen = pg.mkPen((255, 30, 30, 200), width=4)
g_pen = pg.mkPen((30, 255, 30, 200), width=4)
b_pen = pg.mkPen((30, 30, 255, 200), width=4)
# Color channel curves
self.r_curve = pg.PlotCurveItem(pen=r_pen)
self.g_curve = pg.PlotCurveItem(pen=g_pen)
self.b_curve = pg.PlotCurveItem(pen=b_pen)
# Define x data
x_data = np.array(range(1, config.N_PIXELS + 1))
self.r_curve.setData(x=x_data, y=x_data*0)
self.g_curve.setData(x=x_data, y=x_data*0)
self.b_curve.setData(x=x_data, y=x_data*0)
# Add curves to plot
led_plot.addItem(self.r_curve)
led_plot.addItem(self.g_curve)
led_plot.addItem(self.b_curve)
# ================================================= Set up button layout
label_reactive = QLabel("Audio Reactive Effects")
label_non_reactive = QLabel("Non Reactive Effects")
reactive_button_grid = QGridLayout()
non_reactive_button_grid = QGridLayout()
buttons = {}
connecting_funcs = {}
grid_width = 4
i = 0
j = 0
k = 0
l = 0
# Dynamically layout reactive_buttons and connect them to the visualisation effects
def connect_generator(effect):
def func():
visualizer.current_effect = effect
buttons[effect].setDown(True)
func.__name__ = effect
return func
# Where the magic happens
for effect in visualizer.effects:
if not effect in visualizer.non_reactive_effects:
connecting_funcs[effect] = connect_generator(effect)
buttons[effect] = QPushButton(effect)
buttons[effect].clicked.connect(connecting_funcs[effect])
reactive_button_grid.addWidget(buttons[effect], j, i)
i += 1
if i % grid_width == 0:
i = 0
j += 1
else:
connecting_funcs[effect] = connect_generator(effect)
buttons[effect] = QPushButton(effect)
buttons[effect].clicked.connect(connecting_funcs[effect])
non_reactive_button_grid.addWidget(buttons[effect], l, k)
k += 1
if k % grid_width == 0:
k = 0
l += 1
# ============================================== Set up frequency slider
# Frequency range label
label_slider = QLabel("Frequency Range")
# Frequency slider
def freq_slider_change(tick):
minf = freq_slider.tickValue(0)**2.0 * (config.MIC_RATE / 2.0)
maxf = freq_slider.tickValue(1)**2.0 * (config.MIC_RATE / 2.0)
t = 'Frequency range: {:.0f} - {:.0f} Hz'.format(minf, maxf)
freq_label.setText(t)
config.MIN_FREQUENCY = minf
config.MAX_FREQUENCY = maxf
dsp.create_mel_bank()
def set_freq_min():
config.MIN_FREQUENCY = freq_slider.start()
dsp.create_mel_bank()
def set_freq_max():
config.MAX_FREQUENCY = freq_slider.end()
dsp.create_mel_bank()
freq_slider = QRangeSlider()
freq_slider.show()
freq_slider.setMin(0)
freq_slider.setMax(20000)
freq_slider.setRange(config.MIN_FREQUENCY, config.MAX_FREQUENCY)
freq_slider.setBackgroundStyle('background: qlineargradient(x1:0, y1:0, x2:0, y2:1, stop:0 #222, stop:1 #333);')
freq_slider.setSpanStyle('background: qlineargradient(x1:0, y1:0, x2:0, y2:1, stop:0 #282, stop:1 #393);')
freq_slider.setDrawValues(True)
freq_slider.endValueChanged.connect(set_freq_max)
freq_slider.startValueChanged.connect(set_freq_min)
freq_slider.setStyleSheet("""
QRangeSlider * {
border: 0px;
padding: 0px;
}
QRangeSlider > QSplitter::handle {
background: #fff;
}
QRangeSlider > QSplitter::handle:vertical {
height: 3px;
}
QRangeSlider > QSplitter::handle:pressed {
background: #ca5;
}
""")
# ============================================ Set up option tabs layout
label_options = QLabel("Effect Options")
opts_tabs = QTabWidget()
# Dynamically set up tabs
tabs = {}
grid_layouts = {}
self.grid_layout_widgets = {}
options = visualizer.effect_opts.keys()
for effect in visualizer.effects:
# Make the tab
self.grid_layout_widgets[effect] = {}
tabs[effect] = QWidget()
grid_layouts[effect] = QGridLayout()
tabs[effect].setLayout(grid_layouts[effect])
opts_tabs.addTab(tabs[effect],effect)
# These functions make functions for the dynamic ui generation
# YOU WANT-A DYNAMIC I GIVE-A YOU DYNAMIC!
def gen_slider_valuechanger(effect, key):
def func():
visualizer.effect_opts[effect][key] = self.grid_layout_widgets[effect][key].value()
return func
def gen_float_slider_valuechanger(effect, key):
def func():
visualizer.effect_opts[effect][key] = self.grid_layout_widgets[effect][key].slider_value
return func
def gen_combobox_valuechanger(effect, key):
def func():
visualizer.effect_opts[effect][key] = self.grid_layout_widgets[effect][key].currentText()
return func
def gen_checkbox_valuechanger(effect, key):
def func():
visualizer.effect_opts[effect][key] = self.grid_layout_widgets[effect][key].isChecked()
return func
# Dynamically generate ui for settings
if effect in visualizer.dynamic_effects_config:
i = 0
connecting_funcs[effect] = {}
for key, label, ui_element, *opts in visualizer.dynamic_effects_config[effect]:
if opts: # neatest way ^^^^^ i could think of to unpack and handle an unknown number of opts (if any)
opts = opts[0]
if ui_element == "slider":
connecting_funcs[effect][key] = gen_slider_valuechanger(effect, key)
self.grid_layout_widgets[effect][key] = QSlider(Qt.Horizontal)
self.grid_layout_widgets[effect][key].setMinimum(opts[0])
self.grid_layout_widgets[effect][key].setMaximum(opts[1])
self.grid_layout_widgets[effect][key].setValue(visualizer.effect_opts[effect][key])
self.grid_layout_widgets[effect][key].valueChanged.connect(
connecting_funcs[effect][key])
elif ui_element == "float_slider":
connecting_funcs[effect][key] = gen_float_slider_valuechanger(effect, key)
self.grid_layout_widgets[effect][key] = QFloatSlider(*opts, visualizer.effect_opts[effect][key])
self.grid_layout_widgets[effect][key].setValue(visualizer.effect_opts[effect][key])
self.grid_layout_widgets[effect][key].valueChanged.connect(
connecting_funcs[effect][key])
elif ui_element == "dropdown":
connecting_funcs[effect][key] = gen_combobox_valuechanger(effect, key)
self.grid_layout_widgets[effect][key] = QComboBox()
self.grid_layout_widgets[effect][key].addItems(opts)
self.grid_layout_widgets[effect][key].currentIndexChanged.connect(
connecting_funcs[effect][key])
elif ui_element == "checkbox":
connecting_funcs[effect][key] = gen_checkbox_valuechanger(effect, key)
self.grid_layout_widgets[effect][key] = QCheckBox()
self.grid_layout_widgets[effect][key].setCheckState(visualizer.effect_opts[effect][key])
self.grid_layout_widgets[effect][key].stateChanged.connect(
connecting_funcs[effect][key])
grid_layouts[effect].addWidget(QLabel(label),i,0)
grid_layouts[effect].addWidget(self.grid_layout_widgets[effect][key],i,1)
i += 1
#visualizer.effect_settings[effect]
else:
grid_layouts[effect].addWidget(QLabel("No customisable options for this effect :("),0,0)
# ============================================= Add layouts into wrapper
self.setLayout(wrapper)
wrapper.addLayout(labels_layout)
wrapper.addWidget(graph_view)
wrapper.addWidget(label_reactive)
wrapper.addLayout(reactive_button_grid)
wrapper.addWidget(label_non_reactive)
wrapper.addLayout(non_reactive_button_grid)
wrapper.addWidget(label_slider)
wrapper.addWidget(freq_slider)
wrapper.addWidget(label_options)
wrapper.addWidget(opts_tabs)
self.show()
def frames_per_second():
"""Return the estimated frames per second
Returns the current estimate for frames-per-second (FPS).
FPS is estimated by measured the amount of time that has elapsed since
this function was previously called. The FPS estimate is low-pass filtered
to reduce noise.
This function is intended to be called one time for every iteration of
the program's main loop.
Returns
-------
fps : float
Estimated frames-per-second. This value is low-pass filtered
to reduce noise.
"""
global _time_prev, _fps
time_now = time.time() * 1000.0
dt = time_now - _time_prev
_time_prev = time_now
if dt == 0.0:
return _fps.value
return _fps.update(1000.0 / dt)
def memoize(function):
"""Provides a decorator for memoizing functions"""
from functools import wraps
memo = {}
@wraps(function)
def wrapper(*args):
if args in memo:
return memo[args]
else:
rv = function(*args)
memo[args] = rv
return rv
return wrapper
@memoize
def _normalized_linspace(size):
return np.linspace(0, 1, size)
def interpolate(y, new_length):
"""Intelligently resizes the array by linearly interpolating the values
Parameters
----------
y : np.array
Array that should be resized
new_length : int
The length of the new interpolated array
Returns
-------
z : np.array
New array with length of new_length that contains the interpolated
values of y.
"""
if len(y) == new_length:
return y
x_old = _normalized_linspace(len(y))
x_new = _normalized_linspace(new_length)
z = np.interp(x_new, x_old, y)
return z
def microphone_update(audio_samples):
global y_roll, prev_rms, prev_exp, prev_fps_update
# Normalize samples between 0 and 1
y = audio_samples / 2.0**15
# Construct a rolling window of audio samples
y_roll[:-1] = y_roll[1:]
y_roll[-1, :] = np.copy(y)
y_data = np.concatenate(y_roll, axis=0).astype(np.float32)
vol = np.max(np.abs(y_data))
# Transform audio input into the frequency domain
N = len(y_data)
N_zeros = 2**int(np.ceil(np.log2(N))) - N
# Pad with zeros until the next power of two
y_data *= fft_window
y_padded = np.pad(y_data, (0, N_zeros), mode='constant')
YS = np.abs(np.fft.rfft(y_padded)[:N // 2])
# Construct a Mel filterbank from the FFT data
mel = np.atleast_2d(YS).T * dsp.mel_y.T
# Scale data to values more suitable for visualization
mel = np.sum(mel, axis=0)
mel = mel**0.7
# Gain normalization
mel_gain.update(np.max(gaussian_filter1d(mel, sigma=1.0)))
mel /= mel_gain.value
mel = mel_smoothing.update(mel)
# Map filterbank output onto LED strip
led.pixels = visualizer.get_vis(mel, audio_input = True if vol > config.MIN_VOLUME_THRESHOLD else False)
led.update()
if config.USE_GUI:
x = np.linspace(config.MIN_FREQUENCY, config.MAX_FREQUENCY, len(mel))
if vol < config.MIN_VOLUME_THRESHOLD:
gui.label_error.setText("No audio input. Volume below threshold.")
gui.mel_curve.setData(x=x, y=[0 for i in range(config.N_FFT_BINS)])
else:
# Plot filterbank output
gui.mel_curve.setData(x=x, y=fft_plot_filter.update(mel))
gui.label_error.setText("")
fps = frames_per_second()
if time.time() - 0.5 > prev_fps_update:
prev_fps_update = time.time()
app.processEvents()
# Plot the color channels
gui.r_curve.setData(y=led.pixels[0])
gui.g_curve.setData(y=led.pixels[1])
gui.b_curve.setData(y=led.pixels[2])
# Update fps counter
gui.label_fps.setText('{:.0f} / {:.0f} FPS'.format(fps, config.FPS))
elif vol < config.MIN_VOLUME_THRESHOLD:
print("No audio input. Volume below threshold. Volume: {}".format(vol))
if config.DISPLAY_FPS:
print('FPS {:.0f} / {:.0f}'.format(fps, config.FPS))
# Initialise visualiser and GUI
visualizer = Visualizer()
if config.USE_GUI:
# Create GUI window
app = QApplication([])
app.setApplicationName('Visualization')
gui = GUI()
app.processEvents()
# Initialise filter stuff
fft_plot_filter = dsp.ExpFilter(np.tile(1e-1, config.N_FFT_BINS),
alpha_decay=0.5, alpha_rise=0.99)
mel_gain = dsp.ExpFilter(np.tile(1e-1, config.N_FFT_BINS),
alpha_decay=0.01, alpha_rise=0.99)
mel_smoothing = dsp.ExpFilter(np.tile(1e-1, config.N_FFT_BINS),
alpha_decay=0.5, alpha_rise=0.99)
volume = dsp.ExpFilter(config.MIN_VOLUME_THRESHOLD,
alpha_decay=0.02, alpha_rise=0.02)
fft_window = np.hamming(int(config.MIC_RATE / config.FPS) * config.N_ROLLING_HISTORY)
prev_fps_update = time.time()
# Initialise more filter stuff
r_filt = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS // 2),
alpha_decay=0.2, alpha_rise=0.99)
g_filt = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS // 2),
alpha_decay=0.05, alpha_rise=0.3)
b_filt = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS // 2),
alpha_decay=0.1, alpha_rise=0.5)
common_mode = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS // 2),
alpha_decay=0.99, alpha_rise=0.01)
p_filt = dsp.ExpFilter(np.tile(1, (3, config.N_PIXELS // 2)),
alpha_decay=0.1, alpha_rise=0.99)
p = np.tile(1.0, (3, config.N_PIXELS // 2))
gain = dsp.ExpFilter(np.tile(0.01, config.N_FFT_BINS),
alpha_decay=0.001, alpha_rise=0.99)
# The previous time that the frames_per_second() function was called
_time_prev = time.time() * 1000.0
# The low-pass filter used to estimate frames-per-second
_fps = dsp.ExpFilter(val=config.FPS, alpha_decay=0.2, alpha_rise=0.2)
# Number of audio samples to read every time frame
samples_per_frame = int(config.MIC_RATE / config.FPS)
# Array containing the rolling audio sample window
y_roll = np.random.rand(config.N_ROLLING_HISTORY, samples_per_frame) / 1e16
# Initialize LEDs
led.update()
# Start listening to live audio stream
microphone.start_stream(microphone_update)