Note: All code in sandbox.py is temporary and used for experimenting with different visualizations.
527 lines
16 KiB
Python
527 lines
16 KiB
Python
from __future__ import print_function
|
|
from __future__ import division
|
|
import time
|
|
import numpy as np
|
|
from pyqtgraph.Qt import QtGui
|
|
import pyqtgraph as pg
|
|
import config
|
|
import microphone
|
|
import dsp
|
|
import led
|
|
import melbank
|
|
from scipy.ndimage.filters import gaussian_filter1d
|
|
from scipy.signal import argrelextrema
|
|
|
|
|
|
|
|
def rainbow(length, speed=1.0 / 5.0):
|
|
"""Returns a rainbow colored array with desired length
|
|
|
|
Returns a rainbow colored array with shape (length, 3).
|
|
Each row contains the red, green, and blue color values between 0 and 1.
|
|
|
|
Example format:
|
|
[[red0, green0, blue0],
|
|
[red1, green1, blue1],
|
|
...
|
|
[redN, greenN, blueN]]
|
|
|
|
Parameters
|
|
----------
|
|
length : int
|
|
The length of the rainbow colored array that should be returned
|
|
|
|
speed : float
|
|
Value indicating the speed that the rainbow colors change.
|
|
If speed > 0, then successive calls to this function will return
|
|
arrays with different colors assigned to the indices.
|
|
If speed == 0, then this function will always return the same colors.
|
|
|
|
Returns
|
|
-------
|
|
x : numpy.array
|
|
np.ndarray with shape (length, 3).
|
|
Columns denote the red, green, and blue color values respectively.
|
|
Each color is a float between 0 and 1.
|
|
"""
|
|
dt = 2.0 * np.pi / length
|
|
t = time.time() * speed
|
|
def r(t): return (np.sin(t + 0.0) + 1.0) * 1.0 / 2.0
|
|
def g(t): return (np.sin(t + (2.0 / 3.0) * np.pi) + 1.0) * 1.0 / 2.0
|
|
def b(t): return (np.sin(t + (4.0 / 3.0) * np.pi) + 1.0) * 1.0 / 2.0
|
|
x = np.tile(0.0, (length, 3))
|
|
for i in range(length):
|
|
x[i][0] = r(i * dt + t)
|
|
x[i][1] = g(i * dt + t)
|
|
x[i][2] = b(i * dt + t)
|
|
return x
|
|
|
|
|
|
def rainbow_gen(length, speed=1./5., center=0.5, width=0.5, f=[1, 1, 1]):
|
|
dt = 2.0 * np.pi / length
|
|
t = time.time() * speed
|
|
phi = 2.0 / 3.0 * np.pi
|
|
def r(t): return np.clip(np.sin(f[0] * t + 1. * phi) * width + center, 0., 1.)
|
|
def g(t): return np.clip(np.sin(f[1] * t + 2. * phi) * width + center, 0., 1.)
|
|
def b(t): return np.clip(np.sin(f[2] * t + 3. * phi) * width + center, 0., 1.)
|
|
x = np.tile(0.0, (length, 3))
|
|
for i in range(length):
|
|
x[i][0] = r(i * dt + t)
|
|
x[i][1] = g(i * dt + t)
|
|
x[i][2] = b(i * dt + t)
|
|
return x
|
|
|
|
|
|
_time_prev = time.time() * 1000.0
|
|
"""The previous time that the frames_per_second() function was called"""
|
|
|
|
_fps = dsp.ExpFilter(val=config.FPS, alpha_decay=0.05, alpha_rise=0.05)
|
|
"""The low-pass filter used to estimate frames-per-second"""
|
|
|
|
|
|
def frames_per_second():
|
|
"""Return the estimated frames per second
|
|
|
|
Returns the current estimate for frames-per-second (FPS).
|
|
FPS is estimated by measured the amount of time that has elapsed since
|
|
this function was previously called. The FPS estimate is low-pass filtered
|
|
to reduce noise.
|
|
|
|
This function is intended to be called one time for every iteration of
|
|
the program's main loop.
|
|
|
|
Returns
|
|
-------
|
|
fps : float
|
|
Estimated frames-per-second. This value is low-pass filtered
|
|
to reduce noise.
|
|
"""
|
|
global _time_prev, _fps
|
|
time_now = time.time() * 1000.0
|
|
dt = time_now - _time_prev
|
|
_time_prev = time_now
|
|
if dt == 0.0:
|
|
return _fps.value
|
|
return _fps.update(1000.0 / dt)
|
|
|
|
|
|
def update_plot_1(x, y):
|
|
"""Updates pyqtgraph plot 1
|
|
|
|
Parameters
|
|
----------
|
|
x : numpy.array
|
|
1D array containing the X-axis values that should be plotted.
|
|
There should only be one X-axis array.
|
|
|
|
y : numpy.ndarray
|
|
Array containing each of the Y-axis series that should be plotted.
|
|
Each row of y corresponds to a Y-axis series. The columns in each row
|
|
are the values that should be plotted.
|
|
|
|
Returns
|
|
-------
|
|
None
|
|
"""
|
|
global curves, p1
|
|
colors = rainbow(config.N_CURVES) * 255.0
|
|
for i in range(config.N_CURVES):
|
|
#curves[i].setPen((colors[i][0], colors[i][1], colors[i][2]))
|
|
curves[i].setData(x=x, y=y[i])
|
|
p1.autoRange()
|
|
p1.setRange(yRange=(0.0, 2.0))
|
|
|
|
|
|
def interpolate(y, new_length):
|
|
"""Intelligently resizes the array by linearly interpolating the values
|
|
|
|
Parameters
|
|
----------
|
|
y : np.array
|
|
Array that should be resized
|
|
|
|
new_length : int
|
|
The length of the new interpolated array
|
|
|
|
Returns
|
|
-------
|
|
z : np.array
|
|
New array with length of new_length that contains the interpolated
|
|
values of y.
|
|
"""
|
|
x_old = np.linspace(0, 1, len(y))
|
|
x_new = np.linspace(0, 1, new_length)
|
|
z = np.interp(x_new, x_old, y)
|
|
return z
|
|
|
|
|
|
def leak_saturated_pixels(pixels):
|
|
pixels = np.copy(pixels)
|
|
for i in range(pixels.shape[0]):
|
|
excess_red = max(pixels[i, 0] - 255.0, 0.0)
|
|
excess_green = max(pixels[i, 1] - 255.0, 0.0)
|
|
excess_blue = max(pixels[i, 2] - 255.0, 0.0)
|
|
# Share excess red
|
|
pixels[i, 1] += excess_red
|
|
pixels[i, 2] += excess_red
|
|
# Share excess green
|
|
pixels[i, 0] += excess_green
|
|
pixels[i, 2] += excess_green
|
|
# Share excess blue
|
|
pixels[i, 0] += excess_blue
|
|
pixels[i, 1] += excess_blue
|
|
return pixels
|
|
|
|
|
|
_EA_norm = dsp.ExpFilter(np.tile(1e-4, config.N_PIXELS), 0.01, 0.85)
|
|
"""Onset energy per-bin normalization constants
|
|
|
|
This filter is responsible for individually normalizing the onset bin energies.
|
|
This is used to obtain per-bin automatic gain control.
|
|
"""
|
|
|
|
_EA_smooth = dsp.ExpFilter(np.tile(1.0, config.N_PIXELS), 0.25, 0.80)
|
|
"""Asymmetric exponential low-pass filtered onset energies
|
|
|
|
This filter is responsible for smoothing the displayed onset energies.
|
|
Asymmetric rise and fall constants allow the filter to quickly respond to
|
|
increases in onset energy, while slowly responded to decreases.
|
|
"""
|
|
|
|
|
|
# Individually normalized energy spike method
|
|
# Works well with GAMMA_CORRECTION = True
|
|
# This is one of the best visualizations, but doesn't work for everything
|
|
def update_leds_6(y):
|
|
"""Visualization using per-bin normalized onset energies
|
|
|
|
Visualizes onset energies by normalizing each frequency bin individually.
|
|
The normalized bins are then processed and displayed onto the LED strip.
|
|
|
|
This function visualizes the onset energies by individually normalizing
|
|
each onset energy bin. The normalized onset bins are then scaled and
|
|
|
|
Parameters
|
|
----------
|
|
y : numpy.array
|
|
Array containing the onset energies that should be visualized.
|
|
|
|
"""
|
|
y = np.abs(y)**1.25
|
|
# Update normalization constants and then normalize each bin
|
|
_EA_norm.update(y)
|
|
y /= _EA_norm.value
|
|
# Update the onset energy low-pass filter and discard value too dim
|
|
_EA_smooth.update(y)
|
|
_EA_smooth.value[_EA_smooth.value < .1] = 0.0
|
|
# Return the pixels
|
|
pixels = np.copy(_EA_smooth.value)**1.5
|
|
return pixels
|
|
|
|
|
|
_EF_norm = dsp.ExpFilter(np.tile(1.0, config.N_PIXELS), 0.05, 0.9)
|
|
_EF_smooth = dsp.ExpFilter(np.tile(1.0, config.N_PIXELS), 0.08, 0.9)
|
|
_prev_energy = 0.0
|
|
|
|
|
|
# Individually normalized energy flux
|
|
def update_leds_5(y):
|
|
global _prev_energy
|
|
y = np.copy(y)
|
|
EF = np.max(y - _prev_energy, 0.0)
|
|
_prev_energy = np.copy(y)
|
|
_EF_norm.update(EF)
|
|
EF /= _EF_norm.value
|
|
_EF_smooth.update(EF)
|
|
# Cutoff values below 0.1
|
|
_EF_smooth.value[_EF_smooth.value < 0.1] = 0.0
|
|
pixels = np.copy(_EF_smooth.value)
|
|
return pixels
|
|
|
|
|
|
_prev_E = np.tile(.1, config.N_PIXELS)
|
|
_EF_N = dsp.ExpFilter(np.tile(.1, config.N_PIXELS), 0.01, 0.9)
|
|
def update_leds_5(y):
|
|
global _prev_E
|
|
y = np.copy(y)
|
|
current_E = y**2.0
|
|
EF = current_E - _prev_E
|
|
_prev_E = np.copy(current_E)
|
|
EF[EF < 0.0] = 0.0
|
|
_EF_N.update(EF)
|
|
EF /= _EF_N.value
|
|
EF[current_E < 0.02] = 0.0
|
|
return EF
|
|
|
|
|
|
|
|
|
|
_energy_norm = dsp.ExpFilter(10.0, alpha_decay=.15, alpha_rise=.9)
|
|
_energy_smooth = dsp.ExpFilter(10.0, alpha_decay=0.1, alpha_rise=0.8)
|
|
|
|
|
|
# Modulate brightness by relative average rectified onset flux
|
|
def update_leds_4(y):
|
|
global _prev_energy
|
|
energy = np.sum(y**1.0)
|
|
EF = max(energy - _prev_energy, 0.0)
|
|
_prev_energy = energy
|
|
_energy_norm.update(EF)
|
|
_energy_smooth.update(min(EF / _energy_norm.value, 1.0))
|
|
pixels = np.tile(_energy_smooth.value, y.shape[0])
|
|
return pixels
|
|
|
|
|
|
# Energy flux based motion across the LED strip
|
|
def update_leds_3(y):
|
|
global pixels, _prev_energy
|
|
y = np.copy(y)
|
|
# Calculate energy flux
|
|
energy = np.sum(y)
|
|
energy_flux = max(energy - _prev_energy, 0)
|
|
_prev_energy = energy
|
|
# Normalize energy flux
|
|
_energy_norm.update(energy_flux)
|
|
# Update and return pixels
|
|
pixels = np.roll(pixels, 1)
|
|
pixels[0] = energy_flux
|
|
return np.copy(pixels)
|
|
|
|
|
|
# Energy based motion across the LED strip
|
|
def update_leds_2(y):
|
|
global pixels
|
|
y = np.copy(y)
|
|
# Calculate energy
|
|
energy = np.sum(y**1.5)
|
|
onset_energy.update(energy)
|
|
energy /= onset_energy.value
|
|
# Update and return pixels
|
|
pixels = np.roll(pixels, 1)
|
|
pixels[0] = energy
|
|
return np.copy(pixels)
|
|
|
|
|
|
def update_leds_1(y):
|
|
"""Display the raw onset spectrum on the LED strip"""
|
|
return np.copy(y)**0.75
|
|
|
|
|
|
YS_peak = dsp.ExpFilter(1.0, alpha_decay=0.005, alpha_rise=0.95)
|
|
|
|
def microphone_update(stream):
|
|
global y_roll
|
|
# Retrieve new audio samples and construct the rolling window
|
|
y = np.fromstring(stream.read(samples_per_frame), dtype=np.int16)
|
|
y = y / 2.0**15
|
|
y_roll = np.roll(y_roll, -1, axis=0)
|
|
y_roll[-1, :] = np.copy(y)
|
|
y_data = np.concatenate(y_roll, axis=0)
|
|
# # Calculate onset detection functions
|
|
# SF, NWPD, RCD = dsp.onset(y_data)
|
|
# # Apply Gaussian blur to improve agreement between onset functions
|
|
# SF = gaussian_filter1d(SF, 1.0)
|
|
# NWPD = gaussian_filter1d(NWPD, 1.0)
|
|
# RCD = gaussian_filter1d(RCD, 1.0)
|
|
# # Update and normalize peak followers
|
|
# SF_peak.update(np.max(SF))
|
|
# NWPD_peak.update(np.max(NWPD))
|
|
# RCD_peak.update(np.max(RCD))
|
|
# SF /= SF_peak.value
|
|
# NWPD /= NWPD_peak.value
|
|
# RCD /= RCD_peak.value
|
|
# # Normalize and update onset spectrum
|
|
# onset = SF + NWPD + RCD
|
|
# onset_peak.update(np.max(onset))
|
|
# onset /= onset_peak.value
|
|
# onsets.update(onset)
|
|
# # Map the onset values to LED strip pixels
|
|
# if len(onsets.value) != config.N_PIXELS:
|
|
# onset_values = interpolate(onsets.value, config.N_PIXELS)
|
|
# else:
|
|
# onset_values = np.copy(onsets.value)
|
|
# brightness = led_visualization(onset_values)
|
|
|
|
XS, YS = dsp.fft(y_data, window=np.hamming)
|
|
YS = YS[XS >= 0.0]
|
|
XS = XS[XS >= 0.0]
|
|
YS = np.atleast_2d(np.abs(YS)).T * dsp.mel_y.T
|
|
YS = np.sum(YS, axis=0)**2.0
|
|
#YS = gaussian_filter1d(YS, 2.0)
|
|
YS = np.diff(YS, n=0)
|
|
YS_peak.update(np.max(YS))
|
|
YS /= YS_peak.value
|
|
|
|
if len(YS) != config.N_PIXELS:
|
|
YS = interpolate(YS, config.N_PIXELS)
|
|
|
|
#YS = led_visualization(YS)
|
|
YS = led_vis3(YS)
|
|
|
|
# Plot the onsets
|
|
#plot_x = np.array(range(1, len(onsets.value) + 1))
|
|
plot_x = np.array(range(1, len(YS) + 1))
|
|
#plot_y = [onsets.value**i for i in np.linspace(2.0, 0.25, config.N_CURVES)]
|
|
plot_y = [YS]
|
|
update_plot_1(plot_x, plot_y)
|
|
app.processEvents()
|
|
print('FPS {:.0f} / {:.0f}'.format(frames_per_second(), config.FPS))
|
|
|
|
|
|
# Create plot and window
|
|
app = QtGui.QApplication([])
|
|
win = pg.GraphicsWindow('Audio Visualization')
|
|
win.resize(300, 200)
|
|
win.setWindowTitle('Audio Visualization')
|
|
# Create plot 1 containing config.N_CURVES
|
|
p1 = win.addPlot(title='Onset Detection Function')
|
|
p1.setLogMode(x=False)
|
|
curves = []
|
|
colors = rainbow(config.N_CURVES) * 255.0
|
|
for i in range(config.N_CURVES):
|
|
curve = p1.plot(pen=(colors[i][0], colors[i][1], colors[i][2]))
|
|
curves.append(curve)
|
|
|
|
|
|
# Pixel values for each LED
|
|
pixels = np.tile(0.0, config.N_PIXELS)
|
|
# Used to colorize the LED strip
|
|
color = rainbow(config.N_PIXELS) * 255.0
|
|
|
|
# Tracks average onset spectral energy
|
|
onset_energy = dsp.ExpFilter(1.0, alpha_decay=0.01, alpha_rise=0.65)
|
|
|
|
# Tracks the location of the spectral median
|
|
median = dsp.ExpFilter(val=config.N_SUBBANDS / 2.0,
|
|
alpha_decay=0.1, alpha_rise=0.1)
|
|
# Smooths the decay of the onset detection function
|
|
onsets = dsp.ExpFilter(val=np.tile(0.0, (config.N_SUBBANDS)),
|
|
alpha_decay=0.15, alpha_rise=0.75)
|
|
# Peak followers used for normalization
|
|
SF_peak = dsp.ExpFilter(1.0, alpha_decay=0.01, alpha_rise=0.99)
|
|
NWPD_peak = dsp.ExpFilter(1.0, alpha_decay=0.01, alpha_rise=0.99)
|
|
RCD_peak = dsp.ExpFilter(1.0, alpha_decay=0.01, alpha_rise=0.99)
|
|
onset_peak = dsp.ExpFilter(0.1, alpha_decay=0.002, alpha_rise=0.5)
|
|
|
|
# Number of audio samples to read every time frame
|
|
samples_per_frame = int(config.MIC_RATE / config.FPS)
|
|
# Array containing the rolling audio sample window
|
|
y_roll = np.random.rand(config.N_ROLLING_HISTORY, samples_per_frame) / 100.0
|
|
|
|
# Which LED visualization to use
|
|
# update_leds_1 = raw onset spectrum without normalization (GAMMA = True)
|
|
# update_leds_2 = energy average chase effect (GAMMA = True)
|
|
# update_leds_3 = energy flux chase effect (GAMMA = True)
|
|
# update_leds_4 = brightness modulation effect (GAMMA = True)
|
|
# update_leds_5 = energy flux normalized per-bin spectrum (GAMMA = True)
|
|
# update_leds_6 = energy average normalized per-bin spectrum (GAMMA = True)
|
|
|
|
# Low pass filter for the LEDs being output to the strip
|
|
pixels_filt = dsp.ExpFilter(np.tile(0., (config.N_PIXELS, 3)), .14, .9)
|
|
|
|
|
|
def hyperbolic_tan(x):
|
|
return 1.0 - 2.0 / (np.exp(2.0 * x) + 1.0)
|
|
|
|
|
|
def bloom_peaks(x, width=3, blur_factor=1.0):
|
|
peaks = argrelextrema(x, np.greater)[0]
|
|
y = x * 0.0
|
|
if len(peaks) == 0:
|
|
return y
|
|
for peak in peaks:
|
|
min_idx = max(peak - width, 0)
|
|
max_idx = min(peak + width, len(x) - 1)
|
|
for i in range(min_idx, max_idx):
|
|
y[i] = x[i]
|
|
y = gaussian_filter1d(y, blur_factor)
|
|
return y
|
|
|
|
|
|
# This is the function responsible for updating LED values
|
|
# Edit this function to change the visualization
|
|
def led_visualization(onset_values):
|
|
# Visualizations that we want to use (normalized to ~[0, 1])
|
|
#pixels_A = update_leds_6(onset_values)
|
|
#pixels_B = update_leds_4(onset_values)
|
|
# Combine the effects by taking the product
|
|
#brightness = pixels_A #* pixels_B
|
|
brightness = update_leds_6(onset_values**2.0)
|
|
brightness = gaussian_filter1d(brightness, 4.0)
|
|
#brightness = hyperbolic_tan(brightness)
|
|
brightness = bloom_peaks(brightness)**2.
|
|
# Combine pixels with color map
|
|
color = rainbow_gen(onset_values.shape[0],
|
|
speed=1.,
|
|
center=0.5,
|
|
width=0.5,
|
|
f=[1.1, .5, .2]) * 255.0
|
|
color = np.tile(255.0, (config.N_PIXELS, 3))
|
|
# color = rainbow(onset_values.shape[0]) * 255.0
|
|
pixels = (brightness * color.T).T
|
|
pixels = leak_saturated_pixels(pixels)
|
|
pixels = np.clip(pixels, 0., 255.)
|
|
# Apply low-pass filter to the output
|
|
pixels_filt.update(np.copy(pixels))
|
|
# Display values on the LED strip
|
|
led.pixels = np.round(pixels_filt.value).astype(int)
|
|
led.update()
|
|
return brightness
|
|
|
|
|
|
mean_energy = dsp.ExpFilter(0.1, alpha_decay=0.05, alpha_rise=0.05)
|
|
|
|
def led_vis2(x):
|
|
energy = np.mean(x**.5)
|
|
mean_energy.update(energy)
|
|
energy = energy / mean_energy.value - 1.0
|
|
edge = np.exp(-10 * np.linspace(0, 1, len(x)))
|
|
edge = edge + edge[::-1]
|
|
edge *= max(energy, 0)
|
|
edge /= 2.0
|
|
|
|
x = gaussian_filter1d(x, 3.0)
|
|
x = update_leds_6(x)
|
|
red = bloom_peaks(x**1.0, width=1, blur_factor=1.5)
|
|
green = bloom_peaks(x**1.0, width=2, blur_factor=0.5)
|
|
blue = bloom_peaks(x**1.0, width=1, blur_factor=0.5)
|
|
# Set LEDs
|
|
color = np.tile(0.0, (3, config.N_PIXELS))
|
|
color[0, :] = 1.0*edge + red*1.0
|
|
color[1, :] = 1.2*edge + green*1.0
|
|
color[2, :] = 1.5*edge + blue*1.0
|
|
color = color.T * 255.0
|
|
pixels_filt.update(color)
|
|
led.pixels = np.round(pixels_filt.value).astype(int)
|
|
led.update()
|
|
return (color[:, 0] + color[:, 1] + color[:, 2]) / (3. * 255.0)
|
|
|
|
|
|
N = 60
|
|
E = []
|
|
for i in range(0, N):
|
|
alpha_decay = 0.01 * (float(i + 1) / (N + 1.0))**2.0
|
|
alpha_rise = alpha_decay
|
|
E.append(dsp.ExpFilter(.1, alpha_decay, alpha_rise))
|
|
|
|
def led_vis3(x):
|
|
energy = np.mean(x**.5)
|
|
pixels = np.tile(0.0, config.N_PIXELS)
|
|
for i in range(N):
|
|
E[i].update(energy)
|
|
pixels[i] = hyperbolic_tan(max(energy / E[i].value - 1.0, 0))
|
|
|
|
color = np.tile(0.0, (3, config.N_PIXELS))
|
|
color[0, :] = pixels
|
|
color[1, :] = pixels
|
|
color[2, :] = pixels
|
|
color = color.T * 255.0
|
|
pixels_filt.update(color)
|
|
led.pixels = np.round(pixels_filt.value).astype(int)
|
|
led.update()
|
|
return (color[:, 0] + color[:, 1] + color[:, 2]) / (3. * 255.0)
|
|
|
|
if __name__ == '__main__':
|
|
led.update()
|
|
microphone.start_stream(microphone_update)
|