Complete rewrite of most sections, added new onset detection

This commit is contained in:
Scott Lawson 2016-10-22 21:55:22 -07:00
parent 17313c254b
commit d966bb878d
7 changed files with 693 additions and 156 deletions

View File

@ -9,7 +9,8 @@
#define BUFFER_LEN 1024
// Wifi and socket settings
const char* ssid = "LAWSON-LINK-2.4";
//const char* ssid = "LAWSON-LINK-2.4";
const char* ssid = "led_strip";
const char* password = "felixlina10";
unsigned int localPort = 7777;
char packetBuffer[BUFFER_LEN];
@ -19,11 +20,16 @@ static WS2812 ledstrip;
static Pixel_t pixels[NUM_LEDS];
WiFiUDP port;
// Network information
IPAddress ip(192, 168, 1, 150);
IPAddress gateway(192, 168, 1, 1);
IPAddress subnet(255, 255, 255, 0);
void setup() {
Serial.begin(115200);
WiFi.config(ip, gateway, subnet);
WiFi.begin(ssid, password);
Serial.println("");
// Connect to wifi and print the IP address over serial
while (WiFi.status() != WL_CONNECTED) {
delay(500);

View File

@ -1,13 +1,16 @@
"""Settings for audio reactive LED strip"""
from __future__ import print_function
from __future__ import division
import os
N_PIXELS = 240
N_PIXELS = 60
"""Number of pixels in the LED strip (must match ESP8266 firmware)"""
GAMMA_TABLE_PATH = os.path.join(os.path.dirname(__file__), 'gamma_table.npy')
"""Location of the gamma correction table"""
UDP_IP = '192.168.0.100'
UDP_IP = '192.168.0.101'
#UDP_IP = '192.168.137.28'
"""IP address of the ESP8266"""
UDP_PORT = 7777
@ -16,7 +19,7 @@ UDP_PORT = 7777
MIC_RATE = 44100
"""Sampling frequency of the microphone in Hz"""
FPS = 66
FPS = 50
"""Desired LED strip update rate in frames (updates) per second
This is the desired update rate of the LED strip. The actual refresh rate of
@ -28,7 +31,7 @@ the duration of the short-time Fourier transform. This can negatively affect
low frequency (bass) response.
"""
ENERGY_THRESHOLD = 5.5
ENERGY_THRESHOLD = 14.0
"""Energy threshold for determining whether a beat has been detected
One aspect of beat detection is comparing the current energy of a frequency
@ -43,7 +46,7 @@ For example, if ENERGY_THRESHOLD = 2, then a beat is detected if the current
frequency subband energy is more than 2 times the recent average energy.
"""
VARIANCE_THRESHOLD = 10.0
VARIANCE_THRESHOLD = 0.0
"""Variance threshold for determining whether a beat has been detected
Beat detection is largely determined by the ENERGY_THRESHOLD, but we can also
@ -54,7 +57,7 @@ One downside to using a variance threshold is that it is an absolute threshold
which is affected by the current volume.
"""
N_SUBBANDS = 128
N_SUBBANDS = 40 # 240 #48
"""Number of frequency bins to use for beat detection
More subbands improve beat detection sensitivity but it may become more
@ -64,7 +67,7 @@ Fewer subbands reduces signal processing time at the expense of beat detection
sensitivity.
"""
N_HISTORY = int(1.2 * FPS)
N_HISTORY = int(0.8 * FPS)
"""Number of previous samples to consider when doing beat detection
Beats are detected by comparing the most recent audio recording to a collection
@ -82,3 +85,11 @@ of previous data tends to work well.
GAMMA_CORRECTION = True
"""Whether to correct LED brightness for nonlinear brightness perception"""
N_CURVES = 4
"""Number of curves to plot in the visualization window"""
N_ROLLING_HISTORY = 2
"""Number of past audio frames to include in the rolling window"""

View File

@ -1,19 +1,58 @@
from __future__ import print_function
from __future__ import division
#from __future__ import division
import numpy as np
from scipy.interpolate import interp1d
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pylab as plt
plt.style.use('lawson')
import microphone as mic
import scipy.fftpack
import config
class ExponentialFilter:
"""Simple exponential smoothing filter"""
def __init__(self, val=0.0, alpha_decay=0.5, alpha_rise=0.5):
"""Small rise / decay factors = more smoothing"""
assert 0.0 < alpha_decay < 1.0, 'Invalid decay smoothing factor'
assert 0.0 < alpha_rise < 1.0, 'Invalid rise smoothing factor'
self.alpha_decay = alpha_decay
self.alpha_rise = alpha_rise
self.value = val
def update(self, value):
if not isinstance(self.value, (int, long, float)):
alpha = value - self.value
alpha[alpha > 0.0] = self.alpha_rise
alpha[alpha <= 0.0] = self.alpha_decay
else:
alpha = self.alpha_rise if value > self.value else self.alpha_decay
self.value = alpha * value + (1.0 - alpha) * self.value
return self.value
# FFT statistics for a few previous updates
_ys_historical_energy = np.zeros(shape=(config.N_SUBBANDS, config.N_HISTORY))
_ys_historical_energy = np.tile(1.0, (config.N_SUBBANDS, config.N_HISTORY))
def beat_detect(ys):
"""Detect beats using an energy and variance theshold
Parameters
----------
ys : numpy.array
Array containing the magnitudes for each frequency bin of the
fast fourier transformed audio data.
Returns
-------
has_beat : numpy.array
Array of booleans indicating a beat was detected in each of the
frequency bins of ys.
current_energy / mean_energy : numpy.array
Array containing the ratios of the energies relative to the
historical average energy for each of the frequency bins. The energies
are calculated as the square of the real FFT magnitudes
ys_variance : numpy.array
The historical variance of the energies associated with each frequency
bin in ys.
"""
global _ys_historical_energy
# Beat energy criterion
current_energy = ys * ys
@ -26,29 +65,126 @@ def beat_detect(ys):
has_beat_variance = ys_variance > config.VARIANCE_THRESHOLD
# Combined energy + variance detection
has_beat = has_beat_energy * has_beat_variance
return has_beat
return has_beat, current_energy / mean_energy, ys_variance
def fft(data):
"""Returns |fft(data)|"""
yL, yR = np.split(np.abs(np.fft.fft(data)), 2)
ys = np.add(yL, yR[::-1])
xs = np.arange(int(config.MIC_RATE / config.FPS) / 2, dtype=float)
xs *= float(config.MIC_RATE) / int(config.MIC_RATE / config.FPS)
def wrap_phase(phase):
"""Converts phases in the range [0, 2 pi] to [-pi, pi]"""
return (phase + np.pi) % (2 * np.pi) - np.pi
ys_prev = None
phase_prev = None
dphase_prev = None
def onset(yt):
"""Detects onsets in the given audio time series data
Onset detection is perfomed using an ensemble of three onset detection
functions.
The first onset detection function uses the rectified spectral flux (SF)
of successive FFT data frames.
The second onset detection function uses the normalized weighted phase
difference (NWPD) of successive FFT data frames.
The third is a rectified complex domain onset detection function.
The product of these three functions forms an ensemble onset detection
function that returns continuous valued onset detection estimates.
Parameters
----------
yt : numpy.array
Array of time series data to perform onset detection on
Returns
-------
SF : numpy.array
Array of rectified spectral flux values
NWPD : numpy.array
Array of normalized weighted phase difference values
RCD : numpy.array
Array of rectified complex domain values
References
----------
Dixon, Simon "Onset Detection Revisted"
"""
global ys_prev, phase_prev, dphase_prev
xs, ys = fft_log_partition(yt,
subbands=config.N_SUBBANDS,
window=np.hamming,
fmin=1,
fmax=14000)
#ys = music_fft(yt)
magnitude = np.abs(ys)
phase = wrap_phase(np.angle(ys))
# Special case for initialization
if ys_prev is None:
ys_prev = ys
phase_prev = phase
dphase_prev = phase
# Rectified spectral flux
SF = np.abs(ys) - np.abs(ys_prev)
SF[SF < 0.0] = 0.0
# First difference of phase
dphase = wrap_phase(phase - phase_prev)
# Second difference of phase
ddphase = wrap_phase(dphase - dphase_prev)
# Normalized weighted phase deviation
NWPD = np.abs(ddphase * magnitude) / magnitude
# Rectified complex domain onset detection function
RCD = np.abs(ys - ys_prev * dphase_prev)
RCD[RCD < 0.0] = 0.0
RCD = RCD
# Update previous values
ys_prev = ys
phase_prev = phase
dphase_prev = dphase
# Replace NaN values with zero
SF = np.nan_to_num(SF)
NWPD = np.nan_to_num(NWPD)
RCD = np.nan_to_num(RCD)
return SF, NWPD, RCD
def rfft(data, window=None):
if window is None:
window = 1.0
else:
window = window(len(data))
ys = np.abs(np.fft.rfft(data*window))
xs = np.fft.rfftfreq(len(data), 1.0 / config.MIC_RATE)
return xs, ys
# def fft(data):
# """Returns |fft(data)|"""
# yL, yR = np.split(np.abs(np.fft.fft(data)), 2)
# ys = np.add(yL, yR[::-1])
# xs = np.arange(mic.CHUNK / 2, dtype=float) * float(mic.RATE) / mic.CHUNK
# return xs, ys
def fft_log_partition(data, fmin=30, fmax=20000, subbands=64):
def rfft_log_partition(data, fmin=30, fmax=20000, subbands=64, window=None):
"""Returns FFT partitioned into subbands that are logarithmically spaced"""
xs, ys = fft(data)
xs, ys = rfft(data, window=window)
xs_log = np.logspace(np.log10(fmin), np.log10(fmax), num=subbands * 32)
f = interp1d(xs, ys)
ys_log = f(xs_log)
X, Y = [], []
for i in range(0, subbands * 32, 32):
X.append(np.mean(xs_log[i:i + 32]))
Y.append(np.mean(ys_log[i:i + 32]))
return np.array(X), np.array(Y)
def fft(data, window=None):
if window is None:
window = 1.0
else:
window = window(len(data))
ys = np.fft.fft(data*window)
xs = np.fft.fftfreq(len(data), 1.0 / config.MIC_RATE)
return xs, ys
def fft_log_partition(data, fmin=30, fmax=20000, subbands=64, window=None):
"""Returns FFT partitioned into subbands that are logarithmically spaced"""
xs, ys = fft(data, window=window)
xs_log = np.logspace(np.log10(fmin), np.log10(fmax), num=subbands * 32)
f = interp1d(xs, ys)
ys_log = f(xs_log)

View File

@ -1,5 +1,4 @@
from __future__ import print_function
import time
import socket
import numpy as np
import config
@ -8,7 +7,7 @@ _sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
_gamma = np.load('gamma_table.npy')
_prev_pixels = np.tile(0, (config.N_PIXELS, 3))
pixels = np.tile(0, (config.N_PIXELS, 3))
pixels = np.tile(1, (config.N_PIXELS, 3))
"""Array containing the pixel values for the LED strip"""
@ -24,70 +23,11 @@ def update():
g = _gamma[pixels[i][1]] if config.GAMMA_CORRECTION else pixels[i][1]
b = _gamma[pixels[i][2]] if config.GAMMA_CORRECTION else pixels[i][2]
m += chr(i) + chr(r) + chr(g) + chr(b)
_prev_pixels = pixels
_prev_pixels = np.copy(pixels)
_sock.sendto(m, (config.UDP_IP, config.UDP_PORT))
# def set_all(R, G, B):
# for i in range(config.N_PIXELS):
# set_pixel(i, R, G, B)
# update_pixels()
# def autocolor(x, speed=1.0):
# dt = 2.0 * np.pi / config.N_PIXELS
# t = time.time() * speed
# def r(t): return (np.sin(t + 0.0) + 1.0) * 1.0 / 2.0
# def g(t): return (np.sin(t + (2.0 / 3.0) * np.pi) + 1.0) * 1.0 / 2.0
# def b(t): return (np.sin(t + (4.0 / 3.0) * np.pi) + 1.0) * 1.0 / 2.0
# for n in range(config.N_PIXELS):
# set_pixel(N=n,
# R=r(n * dt + t) * x[n],
# G=g(n * dt + t) * x[n],
# B=b(n * dt + t) * x[n],
# gamma_correction=True)
# update_pixels()
# def set_pixel(N, R, G, B, gamma_correction=True):
# global _m
# r = int(min(max(R, 0), 255))
# g = int(min(max(G, 0), 255))
# b = int(min(max(B, 0), 255))
# if gamma_correction:
# r = _gamma_table[r]
# g = _gamma_table[g]
# b = _gamma_table[b]
# if _m is None:
# _m = chr(N) + chr(r) + chr(g) + chr(b)
# else:
# _m += chr(N) + chr(r) + chr(g) + chr(b)
# def update_pixels():
# global _m
# _sock.sendto(_m, (config.UDP_IP, config.UDP_PORT))
# _m = None
# def rainbow(brightness=255.0, speed=1.0, fps=10):
# offset = 132
# dt = 2.0 * np.pi / config.N_PIXELS
# def r(t): return (np.sin(t + 0.0) + 1.0) * brightness / 2.0 + offset
# def g(t): return (np.sin(t + (2.0 / 3.0) * np.pi) + 1.0) * brightness / 2.0 + offset
# def b(t): return (np.sin(t + (4.0 / 3.0) * np.pi) + 1.0) * brightness / 2.0 + offset
# while True:
# t = time.time() * speed
# for n in range(config.N_PIXELS):
# T = t + n * dt
# set_pixel(N=n, R=r(T), G=g(T), B=b(T))
# update_pixels()
# time.sleep(1.0 / fps)
if __name__ == '__main__':
while True:
update()
#set_all(0, 0, 0)
# rainbow(speed=0.025, fps=40, brightness=0)
pixels += 0.0
update()

View File

@ -1,7 +1,6 @@
import pyaudio
import config
CHUNK = int(config.MIC_RATE / config.FPS)
def start_stream(callback):
p = pyaudio.PyAudio()

457
python/sandbox.py Normal file
View File

@ -0,0 +1,457 @@
from __future__ import print_function
from __future__ import division
import time
import numpy as np
from pyqtgraph.Qt import QtGui
import pyqtgraph as pg
import config
import microphone
import dsp
import led
def rainbow(length, speed=1.0 / 5.0):
"""Returns a rainbow colored array with desired length
Returns a rainbow colored array with shape (length, 3).
Each row contains the red, green, and blue color values between 0 and 1.
Parameters
----------
length : int
The length of the rainbow colored array that should be returned
speed : float
Value indicating the speed that the rainbow colors change.
If speed > 0, then successive calls to this function will return
arrays with different colors assigned to the indices.
If speed == 0, then this function will always return the same colors.
Returns
-------
x : numpy.array
np.ndarray with shape (length, 3).
Columns denote the red, green, and blue color values respectively.
Each color is a float between 0 and 1.
"""
dt = 2.0 * np.pi / length
t = time.time() * speed
def r(t): return (np.sin(t + 0.0) + 1.0) * 1.0 / 2.0
def g(t): return (np.sin(t + (2.0 / 3.0) * np.pi) + 1.0) * 1.0 / 2.0
def b(t): return (np.sin(t + (4.0 / 3.0) * np.pi) + 1.0) * 1.0 / 2.0
x = np.tile(0.0, (length, 3))
for i in range(length):
x[i][0] = r(i * dt + t)
x[i][1] = g(i * dt + t)
x[i][2] = b(i * dt + t)
return x
_time_prev = time.time() * 1000.0
"""The previous time that the frames_per_second() function was called"""
_fps = dsp.ExponentialFilter(val=config.FPS, alpha_decay=0.01, alpha_rise=0.01)
"""The low-pass filter used to estimate frames-per-second"""
def frames_per_second():
"""Return the estimated frames per second
Returns the current estimate for frames-per-second (FPS).
FPS is estimated by measured the amount of time that has elapsed since
this function was previously called. The FPS estimate is low-pass filtered
to reduce noise.
This function is intended to be called one time for every iteration of
the program's main loop.
Returns
-------
fps : float
Estimated frames-per-second. This value is low-pass filtered
to reduce noise.
"""
global _time_prev, _fps
time_now = time.time() * 1000.0
dt = time_now - _time_prev
_time_prev = time_now
if dt == 0.0:
return _fps.value
return _fps.update(1000.0 / dt)
def update_plot_1(x, y):
"""Updates pyqtgraph plot 1
Parameters
----------
x : numpy.array
1D array containing the X-axis values that should be plotted.
There should only be one X-axis array.
y : numpy.ndarray
Array containing each of the Y-axis series that should be plotted.
Each row of y corresponds to a Y-axis series. The columns in each row
are the values that should be plotted.
Returns
-------
None
"""
global curves, p1
colors = rainbow(config.N_CURVES) * 255.0
for i in range(config.N_CURVES):
curves[i].setPen((colors[i][0], colors[i][1], colors[i][2]))
curves[i].setData(x=x, y=y[i])
p1.autoRange()
p1.setRange(yRange=(0, 2.0))
_EA_norm = dsp.ExponentialFilter(np.tile(1e-4, config.N_PIXELS), 0.005, 0.25)
"""Onset energy per-bin normalization constants
This filter is responsible for individually normalizing the onset bin energies.
This is used to obtain per-bin automatic gain control.
"""
_EA_smooth = dsp.ExponentialFilter(np.tile(1.0, config.N_PIXELS), 0.15, 0.80)
"""Asymmetric exponential low-pass filtered onset energies
This filter is responsible for smoothing the displayed onset energies.
Asymmetric rise and fall constants allow the filter to quickly respond to
increases in onset energy, while slowly responded to decreases.
"""
def interpolate(y, new_length):
"""Intelligently resizes the array by linearly interpolating the values
Parameters
----------
y : np.array
Array that should be resized
new_length : int
The length of the new interpolated array
Returns
-------
z : np.array
New array with length of new_length that contains the interpolated
values of y.
"""
x_old = np.linspace(0, 1, len(y))
x_new = np.linspace(0, 1, new_length)
z = np.interp(x_new, x_old, y)
return z
# Individually normalized energy spike method
# Works well with GAMMA_CORRECTION = True
# This is one of the best visualizations, but doesn't work for everything
def update_leds_6(y):
"""Visualization using per-bin normalized onset energies
Visualizes onset energies by normalizing each frequency bin individually.
The normalized bins are then processed and displayed onto the LED strip.
This function visualizes the onset energies by individually normalizing
each onset energy bin. The normalized onset bins are then scaled and
Parameters
----------
y : numpy.array
Array containing the onset energies that should be visualized.
The
"""
# Scale y to emphasize large spikes and attenuate small changes
# Exponents < 1.0 emphasize small changes and penalize large spikes
# Exponents > 1.0 emphasize large spikes and penalize small changes
y = np.copy(y) ** 1.5
# Use automatic gain control to normalize bin values
# Update normalization constants and then normalize each bin
_EA_norm.update(y)
y /= _EA_norm.value
"""Force saturated pixels to leak brighness into neighbouring pixels"""
def smooth():
for n in range(1, len(y) - 1):
excess = y[n] - 1.0
if excess > 0.0:
y[n] = 1.0
y[n - 1] += excess / 2.0
y[n + 1] += excess / 2.0
# Several iterations because the adjacent pixels could also be saturated
for i in range(6):
smooth()
# Update the onset energy low-pass filter and discard value too dim
_EA_smooth.update(y)
_EA_smooth.value[_EA_smooth.value < .1] = 0.0
# If some pixels are too bright, allow saturated pixels to become white
color = rainbow(config.N_PIXELS) * 255.0
for i in range(config.N_PIXELS):
# Update LED strip pixel
led.pixels[i, :] = np.round(color[i, :] * _EA_smooth.value[i]**1.5)
# Leak excess red
excess_red = max(led.pixels[i, 0] - 255, 0)
led.pixels[i, 1] += excess_red
led.pixels[i, 2] += excess_red
# Leak excess green
excess_green = max(led.pixels[i, 1] - 255, 0)
led.pixels[i, 0] += excess_green
led.pixels[i, 2] += excess_green
# Leak excess blue
excess_blue = max(led.pixels[i, 2] - 255, 0)
led.pixels[i, 0] += excess_blue
led.pixels[i, 1] += excess_blue
led.update()
_prev_energy = 0.0
_energy_flux = dsp.ExponentialFilter(1.0, alpha_decay=0.05, alpha_rise=0.9)
_EF_norm = dsp.ExponentialFilter(np.tile(1.0, config.N_PIXELS), 0.05, 0.9)
_EF_smooth = dsp.ExponentialFilter(np.tile(1.0, config.N_PIXELS), 0.1, 0.9)
# Individually normalized energy flux
def update_leds_5(y):
global _prev_energy
# Scale y
y = np.copy(y)
y = y ** 0.5
# Calculate raw energy flux
# Update previous energy
# Rectify energy flux
# Update the normalization constants
# Normalize the individual energy flux values
# Smooth the result using another smoothing filter
EF = y - _prev_energy
_prev_energy = np.copy(y)
EF[EF < 0] = 0.0
_EF_norm.update(EF)
EF /= _EF_norm.value
_EF_smooth.update(EF)
# Cutoff values below 0.1
_EF_smooth.value[_EF_smooth.value < 0.1] = 0.0
color = rainbow(config.N_PIXELS) * 255.0
for i in range(config.N_PIXELS):
led.pixels[i, :] = np.round(color[i, :] * _EF_smooth.value[i])
# Share excess red
excess_red = max(led.pixels[i, 0] - 255, 0)
led.pixels[i, 1] += excess_red
led.pixels[i, 2] += excess_red
# Share excess green
excess_green = max(led.pixels[i, 1] - 255, 0)
led.pixels[i, 0] += excess_green
led.pixels[i, 2] += excess_green
# Share excess blue
excess_blue = max(led.pixels[i, 2] - 255, 0)
led.pixels[i, 0] += excess_blue
led.pixels[i, 1] += excess_blue
led.update()
# Modulate brightness of the entire strip with no individual addressing
def update_leds_4(y):
y = np.copy(y)
energy = np.sum(y * y)
_energy_flux.update(energy)
energy /= _energy_flux.value
led.pixels = np.round((color * energy)).astype(int)
led.update()
# Energy flux based motion across the LED strip
def update_leds_3(y):
global pixels, color, _prev_energy, _energy_flux
y = np.copy(y)
# Calculate energy flux
energy = np.sum(y)
energy_flux = max(energy - _prev_energy, 0)
_prev_energy = energy
# Normalize energy flux
_energy_flux.update(energy_flux)
# Update pixels
pixels = np.roll(pixels, 1)
color = np.roll(color, 1, axis=0)
pixels *= 0.99
pixels[0] = energy_flux
led.pixels = np.copy(np.round((color.T * pixels).T).astype(int))
for i in range(config.N_PIXELS):
# Share excess red
excess_red = max(led.pixels[i, 0] - 255, 0)
led.pixels[i, 1] += excess_red
led.pixels[i, 2] += excess_red
# Share excess green
excess_green = max(led.pixels[i, 1] - 255, 0)
led.pixels[i, 0] += excess_green
led.pixels[i, 2] += excess_green
# Share excess blue
excess_blue = max(led.pixels[i, 2] - 255, 0)
led.pixels[i, 0] += excess_blue
led.pixels[i, 1] += excess_blue
# Update LEDs
led.update()
# Energy based motion across the LED strip
def update_leds_2(y):
global pixels, color
y = np.copy(y)
# Calculate energy
energy = np.sum(y**2.0)
onset_energy.update(energy)
energy /= onset_energy.value
# Update pixels
pixels = np.roll(pixels, 1)
color = np.roll(color, 1, axis=0)
pixels *= 0.99
pixels[pixels < 0.0] = 0.0
pixels[0] = energy
pixels -= 0.005
pixels[pixels < 0.0] = 0.0
led.pixels = np.copy(np.round((color.T * pixels).T).astype(int))
for i in range(config.N_PIXELS):
# Share excess red
excess_red = max(led.pixels[i, 0] - 255, 0)
led.pixels[i, 1] += excess_red
led.pixels[i, 2] += excess_red
# Share excess green
excess_green = max(led.pixels[i, 1] - 255, 0)
led.pixels[i, 0] += excess_green
led.pixels[i, 2] += excess_green
# Share excess blue
excess_blue = max(led.pixels[i, 2] - 255, 0)
led.pixels[i, 0] += excess_blue
led.pixels[i, 1] += excess_blue
# Update LEDs
led.update()
def update_leds_1(y):
"""Display the raw onset spectrum on the LED strip"""
y = np.copy(y)
y = y ** 0.5
color = rainbow(config.N_PIXELS) * 255.0
led.pixels = np.copy(np.round((color.T * y).T).astype(int))
for i in range(config.N_PIXELS):
# Share excess red
excess_red = max(led.pixels[i, 0] - 255, 0)
led.pixels[i, 1] += excess_red
led.pixels[i, 2] += excess_red
# Share excess green
excess_green = max(led.pixels[i, 1] - 255, 0)
led.pixels[i, 0] += excess_green
led.pixels[i, 2] += excess_green
# Share excess blue
excess_blue = max(led.pixels[i, 2] - 255, 0)
led.pixels[i, 0] += excess_blue
led.pixels[i, 1] += excess_blue
led.update()
def microphone_update(stream):
global y_roll, median, onset, SF_peak, NWPD_peak, RCD_peak, onset_peak
# Retrieve new audio samples and construct the rolling window
y = np.fromstring(stream.read(samples_per_frame), dtype=np.int16)
y = y / 2.0**15
y_roll = np.roll(y_roll, -1, axis=0)
y_roll[-1, :] = np.copy(y)
y_data = np.concatenate(y_roll, axis=0)
# Calculate onset detection functions
SF, NWPD, RCD = dsp.onset(y_data)
# Update and normalize peak followers
SF_peak.update(np.max(SF))
NWPD_peak.update(np.max(NWPD))
RCD_peak.update(np.max(RCD))
SF /= SF_peak.value
NWPD /= NWPD_peak.value
RCD /= RCD_peak.value
# Normalize and update onset spectrum
onset = SF * NWPD * RCD
onset_peak.update(np.max(onset))
onset /= onset_peak.value
onsets.update(onset)
# Update the LED strip and resize if necessary
if len(onsets.value) != config.N_PIXELS:
onset_values = interpolate(onsets.value, config.N_PIXELS)
else:
onset_values = np.copy(onsets.value)
led_visualization(onset_values)
# Plot the onsets
plot_x = np.array(range(1, len(onsets.value) + 1))
plot_y = [onsets.value**i for i in np.linspace(1, 0.25, config.N_CURVES)]
update_plot_1(plot_x, plot_y)
app.processEvents()
print('{:.2f}\t{:.2f}\t{:.2f}\t{:.2f}\t{:.2f}'.format(SF_peak.value,
NWPD_peak.value,
RCD_peak.value,
onset_peak.value,
frames_per_second()))
# Create plot and window
app = QtGui.QApplication([])
win = pg.GraphicsWindow('Audio Visualization')
win.resize(800, 600)
win.setWindowTitle('Audio Visualization')
# Create plot 1 containing config.N_CURVES
p1 = win.addPlot(title='Onset Detection Function')
p1.setLogMode(x=False)
curves = []
colors = rainbow(config.N_CURVES) * 255.0
for i in range(config.N_CURVES):
curve = p1.plot(pen=(colors[i][0], colors[i][1], colors[i][2]))
curves.append(curve)
# Pixel values for each LED
pixels = np.tile(0.0, config.N_PIXELS)
# Used to colorize the LED strip
color = rainbow(config.N_PIXELS) * 255.0
# Tracks average onset spectral energy
onset_energy = dsp.ExponentialFilter(1.0, alpha_decay=0.1, alpha_rise=0.99)
# Tracks the location of the spectral median
median = dsp.ExponentialFilter(val=config.N_SUBBANDS / 2.0,
alpha_decay=0.1, alpha_rise=0.1)
# Smooths the decay of the onset detection function
onsets = dsp.ExponentialFilter(val=np.tile(0.0, (config.N_SUBBANDS)),
alpha_decay=0.05, alpha_rise=0.75)
# Peak followers used for normalization
SF_peak = dsp.ExponentialFilter(1.0, alpha_decay=0.01, alpha_rise=0.99)
NWPD_peak = dsp.ExponentialFilter(1.0, alpha_decay=0.01, alpha_rise=0.99)
RCD_peak = dsp.ExponentialFilter(1.0, alpha_decay=0.01, alpha_rise=0.99)
onset_peak = dsp.ExponentialFilter(0.1, alpha_decay=0.002, alpha_rise=0.1)
# Number of audio samples to read every time frame
samples_per_frame = int(config.MIC_RATE / config.FPS)
# Array containing the rolling audio sample window
y_roll = np.random.rand(config.N_ROLLING_HISTORY, samples_per_frame) / 100.0
# Which LED visualization to use
# update_leds_1 = raw onset spectrum without normalization (GAMMA = True)
# update_leds_2 = energy average chase effect (GAMMA = True)
# update_leds_3 = energy flux chase effect (GAMMA = True)
# update_leds_4 = brightness modulation effect (GAMMA = True)
# update_leds_5 = energy flux normalized per-bin spectrum (GAMMA = True)
# update_leds_6 = energy average normalized per-bin spectrum (GAMMA = True)
led_visualization = update_leds_6
if __name__ == '__main__':
led.update()
microphone.start_stream(microphone_update)

View File

@ -24,7 +24,7 @@ class Beat:
self.pixels = np.roll(self.pixels, roll, axis=0)
self.pixels[:roll] *= 0.0
# Apply Gaussian blur to create a dispersion effect
# Apply Gaussian blur to create a dispersion effect
# Dispersion increases in strength over time
sigma = (2. * .14 * self.iteration / (config.N_PIXELS * self.speed))**4.
self.pixels = gaussian_filter1d(self.pixels, sigma, mode='constant')
@ -35,11 +35,13 @@ class Beat:
self.pixels = np.round(self.pixels, decimals=2)
self.pixels = np.clip(self.pixels, 0, 255)
self.speed *= np.exp(2. * np.log(.8) / config.N_PIXELS)
def finished(self):
return np.array_equal(self.pixels, self.pixels * 0.0)
def rainbow(speed=1.0 / 5.0):
def rainbow(speed=10.0 / 5.0):
# Note: assumes array is N_PIXELS / 2 long
dt = np.pi / config.N_PIXELS
t = time.time() * speed
@ -54,84 +56,70 @@ def rainbow(speed=1.0 / 5.0):
return x
def radiate(beats, beat_speed=1.0, max_length=26, min_beats=1):
N_beats = len(beats[beats == True])
# Add new beat if beats were detected
if N_beats > 0 and N_beats >= min_beats:
# Beat properties
beat_power = float(N_beats) / config.N_SUBBANDS
beat_brightness = min(beat_power * 40.0, 255.0)
beat_brightness = max(beat_brightness, 40)
beat_length = int(np.sqrt(beat_power) * max_length)
beat_length = max(beat_length, 2)
# Beat pixels
beat_pixels = np.zeros(config.N_PIXELS / 2)
beat_pixels[:beat_length] = beat_brightness
# Create and add the new beat
beat = Beat(beat_pixels, beat_speed)
radiate.beats = np.append(radiate.beats, beat)
# Pixels that will be displayed on the LED strip
pixels = np.zeros(config.N_PIXELS / 2)
if len(radiate.beats):
pixels += sum([b.pixels for b in radiate.beats])
for b in radiate.beats:
b.update_pixels()
# Only keep the beats that are still visible on the strip
radiate.beats = [b for b in radiate.beats if not b.finished()]
pixels = np.append(pixels[::-1], pixels)
pixels = np.clip(pixels, 0.0, 255.0)
pixels = (pixels * rainbow().T).T
pixels = np.round(pixels).astype(int)
led.pixels = pixels
led.update()
def radiate2(beats, beat_speed=0.8, max_length=26, min_beats=1):
def radiate(beats, energy, beat_speed=1.0, max_length=7, min_beats=1):
N_beats = len(beats[beats == True])
if N_beats > 0 and N_beats >= min_beats:
index_to_color = rainbow()
# Beat properties
beat_power = float(N_beats) / config.N_SUBBANDS
# energy = np.copy(energy)
# energy -= np.min(energy)
# energy /= (np.max(energy) - np.min(energy))
beat_brightness = np.round(256.0 / config.N_SUBBANDS)
beat_brightness *= np.sqrt(config.N_SUBBANDS / N_beats)
beat_brightness *= 1.3
beat_length = int(np.sqrt(beat_power) * max_length)
beat_length = max(beat_length, 2)
beat_pixels = np.tile(0.0, (config.N_PIXELS / 2, 3))
for i in range(len(beats)):
if beats[i]:
beat_color = np.round(index_to_color[i] * beat_brightness)
beat_color = np.round(index_to_color[i] * beat_brightness * energy[i] / 2.0)
beat_pixels[:beat_length] += beat_color
beat_pixels = np.clip(beat_pixels, 0.0, 255.0)
beat = Beat(beat_pixels, beat_speed)
radiate2.beats = np.append(radiate2.beats, beat)
radiate.beats = np.append(radiate.beats, beat)
# Pixels that will be displayed on the LED strip
pixels = np.zeros((config.N_PIXELS / 2, 3))
if len(radiate2.beats):
pixels += sum([b.pixels for b in radiate2.beats])
for b in radiate2.beats:
if len(radiate.beats):
pixels += sum([b.pixels for b in radiate.beats])
for b in radiate.beats:
b.update_pixels()
radiate2.beats = [b for b in radiate2.beats if not b.finished()]
radiate.beats = [b for b in radiate.beats if not b.finished()]
pixels = np.append(pixels[::-1], pixels, axis=0)
pixels = np.clip(pixels, 0.0, 255.0)
pixels = np.round(pixels).astype(int)
led.pixels = pixels
led.pixels = np.round(pixels).astype(int)
led.update()
# Number of audio samples to read every time frame
samples_per_frame = int(config.MIC_RATE / config.FPS)
# Array containing the rolling audio sample window
y_roll = np.random.rand(config.N_ROLLING_HISTORY, samples_per_frame) / 100.0
def microphone_update(stream):
frames_per_buffer = int(config.MIC_RATE / config.FPS)
data = np.fromstring(stream.read(frames_per_buffer), dtype=np.int16)
data = data / 2.0**15
xs, ys = dsp.fft_log_partition(data=data, subbands=config.N_SUBBANDS)
beats = dsp.beat_detect(ys)
radiate2(beats)
global y_roll
# Read new audio data
y = np.fromstring(stream.read(samples_per_frame), dtype=np.int16)
y = y / 2.0**15
# Construct rolling window of audio data
y_roll = np.roll(y_roll, -1, axis=0)
y_roll[-1, :] = np.copy(y)
y_data = np.concatenate(y_roll, axis=0)
# Take the real FFT with logarithmic bin spacing
xs, ys = dsp.rfft_log_partition(y_data,
subbands=config.N_SUBBANDS,
window=np.hamming,
fmin=1,
fmax=14000)
# Visualize the result
beats, energy, variance = dsp.beat_detect(ys)
radiate(beats, energy)
# Initial values for the radiate effect
radiate.beats = np.array([])
radiate2.beats = np.array([])
if __name__ == "__main__":
mic.start_stream(microphone_update)