Complete rewrite of most sections, added new onset detection
This commit is contained in:
parent
17313c254b
commit
d966bb878d
@ -9,7 +9,8 @@
|
||||
#define BUFFER_LEN 1024
|
||||
|
||||
// Wifi and socket settings
|
||||
const char* ssid = "LAWSON-LINK-2.4";
|
||||
//const char* ssid = "LAWSON-LINK-2.4";
|
||||
const char* ssid = "led_strip";
|
||||
const char* password = "felixlina10";
|
||||
unsigned int localPort = 7777;
|
||||
char packetBuffer[BUFFER_LEN];
|
||||
@ -19,11 +20,16 @@ static WS2812 ledstrip;
|
||||
static Pixel_t pixels[NUM_LEDS];
|
||||
WiFiUDP port;
|
||||
|
||||
// Network information
|
||||
IPAddress ip(192, 168, 1, 150);
|
||||
IPAddress gateway(192, 168, 1, 1);
|
||||
IPAddress subnet(255, 255, 255, 0);
|
||||
|
||||
void setup() {
|
||||
Serial.begin(115200);
|
||||
WiFi.config(ip, gateway, subnet);
|
||||
WiFi.begin(ssid, password);
|
||||
Serial.println("");
|
||||
|
||||
// Connect to wifi and print the IP address over serial
|
||||
while (WiFi.status() != WL_CONNECTED) {
|
||||
delay(500);
|
||||
@ -59,4 +65,4 @@ void loop() {
|
||||
|
||||
// Always update strip to improve temporal dithering performance
|
||||
ledstrip.show(pixels);
|
||||
}
|
||||
}
|
||||
|
@ -1,13 +1,16 @@
|
||||
"""Settings for audio reactive LED strip"""
|
||||
from __future__ import print_function
|
||||
from __future__ import division
|
||||
import os
|
||||
|
||||
N_PIXELS = 240
|
||||
N_PIXELS = 60
|
||||
"""Number of pixels in the LED strip (must match ESP8266 firmware)"""
|
||||
|
||||
GAMMA_TABLE_PATH = os.path.join(os.path.dirname(__file__), 'gamma_table.npy')
|
||||
"""Location of the gamma correction table"""
|
||||
|
||||
UDP_IP = '192.168.0.100'
|
||||
UDP_IP = '192.168.0.101'
|
||||
#UDP_IP = '192.168.137.28'
|
||||
"""IP address of the ESP8266"""
|
||||
|
||||
UDP_PORT = 7777
|
||||
@ -16,7 +19,7 @@ UDP_PORT = 7777
|
||||
MIC_RATE = 44100
|
||||
"""Sampling frequency of the microphone in Hz"""
|
||||
|
||||
FPS = 66
|
||||
FPS = 50
|
||||
"""Desired LED strip update rate in frames (updates) per second
|
||||
|
||||
This is the desired update rate of the LED strip. The actual refresh rate of
|
||||
@ -28,33 +31,33 @@ the duration of the short-time Fourier transform. This can negatively affect
|
||||
low frequency (bass) response.
|
||||
"""
|
||||
|
||||
ENERGY_THRESHOLD = 5.5
|
||||
ENERGY_THRESHOLD = 14.0
|
||||
"""Energy threshold for determining whether a beat has been detected
|
||||
|
||||
One aspect of beat detection is comparing the current energy of a frequency
|
||||
subband to the average energy of the subband over some time interval. Beats
|
||||
subband to the average energy of the subband over some time interval. Beats
|
||||
are often associated with large spikes in energy relative to the recent
|
||||
average energy.
|
||||
|
||||
ENERGY_THRESHOLD is the threshold used to determine if the energy spike is
|
||||
sufficiently large to be considered a beat.
|
||||
|
||||
For example, if ENERGY_THRESHOLD = 2, then a beat is detected if the current
|
||||
For example, if ENERGY_THRESHOLD = 2, then a beat is detected if the current
|
||||
frequency subband energy is more than 2 times the recent average energy.
|
||||
"""
|
||||
|
||||
VARIANCE_THRESHOLD = 10.0
|
||||
VARIANCE_THRESHOLD = 0.0
|
||||
"""Variance threshold for determining whether a beat has been detected
|
||||
|
||||
Beat detection is largely determined by the ENERGY_THRESHOLD, but we can also
|
||||
require frequency bands to have a certain minimum variance over some past
|
||||
time interval before a beat can be detected.
|
||||
time interval before a beat can be detected.
|
||||
|
||||
One downside to using a variance threshold is that it is an absolute threshold
|
||||
which is affected by the current volume.
|
||||
"""
|
||||
|
||||
N_SUBBANDS = 128
|
||||
N_SUBBANDS = 40 # 240 #48
|
||||
"""Number of frequency bins to use for beat detection
|
||||
|
||||
More subbands improve beat detection sensitivity but it may become more
|
||||
@ -64,7 +67,7 @@ Fewer subbands reduces signal processing time at the expense of beat detection
|
||||
sensitivity.
|
||||
"""
|
||||
|
||||
N_HISTORY = int(1.2 * FPS)
|
||||
N_HISTORY = int(0.8 * FPS)
|
||||
"""Number of previous samples to consider when doing beat detection
|
||||
|
||||
Beats are detected by comparing the most recent audio recording to a collection
|
||||
@ -75,10 +78,18 @@ For example, setting N_HISTORY = int(1.0 * config.FPS) means that one second
|
||||
of previous audio recordings will be used for beat detection.
|
||||
|
||||
Smaller values reduces signal processing time but values too small may reduce
|
||||
beat detection accuracy. Larger values increase signal processing time and
|
||||
values too large can also reduce beat detection accuracy. Roughly one second
|
||||
beat detection accuracy. Larger values increase signal processing time and
|
||||
values too large can also reduce beat detection accuracy. Roughly one second
|
||||
of previous data tends to work well.
|
||||
"""
|
||||
|
||||
GAMMA_CORRECTION = True
|
||||
"""Whether to correct LED brightness for nonlinear brightness perception"""
|
||||
"""Whether to correct LED brightness for nonlinear brightness perception"""
|
||||
|
||||
|
||||
N_CURVES = 4
|
||||
"""Number of curves to plot in the visualization window"""
|
||||
|
||||
|
||||
N_ROLLING_HISTORY = 2
|
||||
"""Number of past audio frames to include in the rolling window"""
|
184
python/dsp.py
184
python/dsp.py
@ -1,19 +1,58 @@
|
||||
from __future__ import print_function
|
||||
from __future__ import division
|
||||
#from __future__ import division
|
||||
import numpy as np
|
||||
from scipy.interpolate import interp1d
|
||||
import matplotlib
|
||||
matplotlib.use('TkAgg')
|
||||
import matplotlib.pylab as plt
|
||||
plt.style.use('lawson')
|
||||
import microphone as mic
|
||||
import scipy.fftpack
|
||||
import config
|
||||
|
||||
|
||||
class ExponentialFilter:
|
||||
"""Simple exponential smoothing filter"""
|
||||
def __init__(self, val=0.0, alpha_decay=0.5, alpha_rise=0.5):
|
||||
"""Small rise / decay factors = more smoothing"""
|
||||
assert 0.0 < alpha_decay < 1.0, 'Invalid decay smoothing factor'
|
||||
assert 0.0 < alpha_rise < 1.0, 'Invalid rise smoothing factor'
|
||||
self.alpha_decay = alpha_decay
|
||||
self.alpha_rise = alpha_rise
|
||||
self.value = val
|
||||
|
||||
def update(self, value):
|
||||
if not isinstance(self.value, (int, long, float)):
|
||||
alpha = value - self.value
|
||||
alpha[alpha > 0.0] = self.alpha_rise
|
||||
alpha[alpha <= 0.0] = self.alpha_decay
|
||||
else:
|
||||
alpha = self.alpha_rise if value > self.value else self.alpha_decay
|
||||
self.value = alpha * value + (1.0 - alpha) * self.value
|
||||
return self.value
|
||||
|
||||
|
||||
# FFT statistics for a few previous updates
|
||||
_ys_historical_energy = np.zeros(shape=(config.N_SUBBANDS, config.N_HISTORY))
|
||||
_ys_historical_energy = np.tile(1.0, (config.N_SUBBANDS, config.N_HISTORY))
|
||||
|
||||
|
||||
def beat_detect(ys):
|
||||
"""Detect beats using an energy and variance theshold
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ys : numpy.array
|
||||
Array containing the magnitudes for each frequency bin of the
|
||||
fast fourier transformed audio data.
|
||||
|
||||
Returns
|
||||
-------
|
||||
has_beat : numpy.array
|
||||
Array of booleans indicating a beat was detected in each of the
|
||||
frequency bins of ys.
|
||||
current_energy / mean_energy : numpy.array
|
||||
Array containing the ratios of the energies relative to the
|
||||
historical average energy for each of the frequency bins. The energies
|
||||
are calculated as the square of the real FFT magnitudes
|
||||
ys_variance : numpy.array
|
||||
The historical variance of the energies associated with each frequency
|
||||
bin in ys.
|
||||
"""
|
||||
global _ys_historical_energy
|
||||
# Beat energy criterion
|
||||
current_energy = ys * ys
|
||||
@ -26,29 +65,126 @@ def beat_detect(ys):
|
||||
has_beat_variance = ys_variance > config.VARIANCE_THRESHOLD
|
||||
# Combined energy + variance detection
|
||||
has_beat = has_beat_energy * has_beat_variance
|
||||
return has_beat
|
||||
return has_beat, current_energy / mean_energy, ys_variance
|
||||
|
||||
|
||||
def fft(data):
|
||||
"""Returns |fft(data)|"""
|
||||
yL, yR = np.split(np.abs(np.fft.fft(data)), 2)
|
||||
ys = np.add(yL, yR[::-1])
|
||||
xs = np.arange(int(config.MIC_RATE / config.FPS) / 2, dtype=float)
|
||||
xs *= float(config.MIC_RATE) / int(config.MIC_RATE / config.FPS)
|
||||
def wrap_phase(phase):
|
||||
"""Converts phases in the range [0, 2 pi] to [-pi, pi]"""
|
||||
return (phase + np.pi) % (2 * np.pi) - np.pi
|
||||
|
||||
|
||||
ys_prev = None
|
||||
phase_prev = None
|
||||
dphase_prev = None
|
||||
|
||||
|
||||
def onset(yt):
|
||||
"""Detects onsets in the given audio time series data
|
||||
|
||||
Onset detection is perfomed using an ensemble of three onset detection
|
||||
functions.
|
||||
|
||||
The first onset detection function uses the rectified spectral flux (SF)
|
||||
of successive FFT data frames.
|
||||
The second onset detection function uses the normalized weighted phase
|
||||
difference (NWPD) of successive FFT data frames.
|
||||
The third is a rectified complex domain onset detection function.
|
||||
|
||||
The product of these three functions forms an ensemble onset detection
|
||||
function that returns continuous valued onset detection estimates.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
yt : numpy.array
|
||||
Array of time series data to perform onset detection on
|
||||
|
||||
Returns
|
||||
-------
|
||||
SF : numpy.array
|
||||
Array of rectified spectral flux values
|
||||
NWPD : numpy.array
|
||||
Array of normalized weighted phase difference values
|
||||
RCD : numpy.array
|
||||
Array of rectified complex domain values
|
||||
|
||||
References
|
||||
----------
|
||||
Dixon, Simon "Onset Detection Revisted"
|
||||
"""
|
||||
global ys_prev, phase_prev, dphase_prev
|
||||
xs, ys = fft_log_partition(yt,
|
||||
subbands=config.N_SUBBANDS,
|
||||
window=np.hamming,
|
||||
fmin=1,
|
||||
fmax=14000)
|
||||
#ys = music_fft(yt)
|
||||
magnitude = np.abs(ys)
|
||||
phase = wrap_phase(np.angle(ys))
|
||||
# Special case for initialization
|
||||
if ys_prev is None:
|
||||
ys_prev = ys
|
||||
phase_prev = phase
|
||||
dphase_prev = phase
|
||||
# Rectified spectral flux
|
||||
SF = np.abs(ys) - np.abs(ys_prev)
|
||||
SF[SF < 0.0] = 0.0
|
||||
# First difference of phase
|
||||
dphase = wrap_phase(phase - phase_prev)
|
||||
# Second difference of phase
|
||||
ddphase = wrap_phase(dphase - dphase_prev)
|
||||
# Normalized weighted phase deviation
|
||||
NWPD = np.abs(ddphase * magnitude) / magnitude
|
||||
# Rectified complex domain onset detection function
|
||||
RCD = np.abs(ys - ys_prev * dphase_prev)
|
||||
RCD[RCD < 0.0] = 0.0
|
||||
RCD = RCD
|
||||
# Update previous values
|
||||
ys_prev = ys
|
||||
phase_prev = phase
|
||||
dphase_prev = dphase
|
||||
# Replace NaN values with zero
|
||||
SF = np.nan_to_num(SF)
|
||||
NWPD = np.nan_to_num(NWPD)
|
||||
RCD = np.nan_to_num(RCD)
|
||||
return SF, NWPD, RCD
|
||||
|
||||
|
||||
def rfft(data, window=None):
|
||||
if window is None:
|
||||
window = 1.0
|
||||
else:
|
||||
window = window(len(data))
|
||||
ys = np.abs(np.fft.rfft(data*window))
|
||||
xs = np.fft.rfftfreq(len(data), 1.0 / config.MIC_RATE)
|
||||
return xs, ys
|
||||
|
||||
|
||||
# def fft(data):
|
||||
# """Returns |fft(data)|"""
|
||||
# yL, yR = np.split(np.abs(np.fft.fft(data)), 2)
|
||||
# ys = np.add(yL, yR[::-1])
|
||||
# xs = np.arange(mic.CHUNK / 2, dtype=float) * float(mic.RATE) / mic.CHUNK
|
||||
# return xs, ys
|
||||
|
||||
|
||||
def fft_log_partition(data, fmin=30, fmax=20000, subbands=64):
|
||||
def rfft_log_partition(data, fmin=30, fmax=20000, subbands=64, window=None):
|
||||
"""Returns FFT partitioned into subbands that are logarithmically spaced"""
|
||||
xs, ys = fft(data)
|
||||
xs, ys = rfft(data, window=window)
|
||||
xs_log = np.logspace(np.log10(fmin), np.log10(fmax), num=subbands * 32)
|
||||
f = interp1d(xs, ys)
|
||||
ys_log = f(xs_log)
|
||||
X, Y = [], []
|
||||
for i in range(0, subbands * 32, 32):
|
||||
X.append(np.mean(xs_log[i:i + 32]))
|
||||
Y.append(np.mean(ys_log[i:i + 32]))
|
||||
return np.array(X), np.array(Y)
|
||||
|
||||
|
||||
def fft(data, window=None):
|
||||
if window is None:
|
||||
window = 1.0
|
||||
else:
|
||||
window = window(len(data))
|
||||
ys = np.fft.fft(data*window)
|
||||
xs = np.fft.fftfreq(len(data), 1.0 / config.MIC_RATE)
|
||||
return xs, ys
|
||||
|
||||
|
||||
def fft_log_partition(data, fmin=30, fmax=20000, subbands=64, window=None):
|
||||
"""Returns FFT partitioned into subbands that are logarithmically spaced"""
|
||||
xs, ys = fft(data, window=window)
|
||||
xs_log = np.logspace(np.log10(fmin), np.log10(fmax), num=subbands * 32)
|
||||
f = interp1d(xs, ys)
|
||||
ys_log = f(xs_log)
|
||||
|
@ -1,5 +1,4 @@
|
||||
from __future__ import print_function
|
||||
import time
|
||||
import socket
|
||||
import numpy as np
|
||||
import config
|
||||
@ -8,7 +7,7 @@ _sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
|
||||
_gamma = np.load('gamma_table.npy')
|
||||
_prev_pixels = np.tile(0, (config.N_PIXELS, 3))
|
||||
|
||||
pixels = np.tile(0, (config.N_PIXELS, 3))
|
||||
pixels = np.tile(1, (config.N_PIXELS, 3))
|
||||
"""Array containing the pixel values for the LED strip"""
|
||||
|
||||
|
||||
@ -24,70 +23,11 @@ def update():
|
||||
g = _gamma[pixels[i][1]] if config.GAMMA_CORRECTION else pixels[i][1]
|
||||
b = _gamma[pixels[i][2]] if config.GAMMA_CORRECTION else pixels[i][2]
|
||||
m += chr(i) + chr(r) + chr(g) + chr(b)
|
||||
_prev_pixels = pixels
|
||||
_prev_pixels = np.copy(pixels)
|
||||
_sock.sendto(m, (config.UDP_IP, config.UDP_PORT))
|
||||
|
||||
|
||||
|
||||
# def set_all(R, G, B):
|
||||
# for i in range(config.N_PIXELS):
|
||||
# set_pixel(i, R, G, B)
|
||||
# update_pixels()
|
||||
|
||||
|
||||
# def autocolor(x, speed=1.0):
|
||||
# dt = 2.0 * np.pi / config.N_PIXELS
|
||||
# t = time.time() * speed
|
||||
# def r(t): return (np.sin(t + 0.0) + 1.0) * 1.0 / 2.0
|
||||
# def g(t): return (np.sin(t + (2.0 / 3.0) * np.pi) + 1.0) * 1.0 / 2.0
|
||||
# def b(t): return (np.sin(t + (4.0 / 3.0) * np.pi) + 1.0) * 1.0 / 2.0
|
||||
# for n in range(config.N_PIXELS):
|
||||
# set_pixel(N=n,
|
||||
# R=r(n * dt + t) * x[n],
|
||||
# G=g(n * dt + t) * x[n],
|
||||
# B=b(n * dt + t) * x[n],
|
||||
# gamma_correction=True)
|
||||
# update_pixels()
|
||||
|
||||
|
||||
# def set_pixel(N, R, G, B, gamma_correction=True):
|
||||
# global _m
|
||||
# r = int(min(max(R, 0), 255))
|
||||
# g = int(min(max(G, 0), 255))
|
||||
# b = int(min(max(B, 0), 255))
|
||||
# if gamma_correction:
|
||||
# r = _gamma_table[r]
|
||||
# g = _gamma_table[g]
|
||||
# b = _gamma_table[b]
|
||||
# if _m is None:
|
||||
# _m = chr(N) + chr(r) + chr(g) + chr(b)
|
||||
# else:
|
||||
# _m += chr(N) + chr(r) + chr(g) + chr(b)
|
||||
|
||||
|
||||
# def update_pixels():
|
||||
# global _m
|
||||
# _sock.sendto(_m, (config.UDP_IP, config.UDP_PORT))
|
||||
# _m = None
|
||||
|
||||
|
||||
# def rainbow(brightness=255.0, speed=1.0, fps=10):
|
||||
# offset = 132
|
||||
# dt = 2.0 * np.pi / config.N_PIXELS
|
||||
# def r(t): return (np.sin(t + 0.0) + 1.0) * brightness / 2.0 + offset
|
||||
# def g(t): return (np.sin(t + (2.0 / 3.0) * np.pi) + 1.0) * brightness / 2.0 + offset
|
||||
# def b(t): return (np.sin(t + (4.0 / 3.0) * np.pi) + 1.0) * brightness / 2.0 + offset
|
||||
# while True:
|
||||
# t = time.time() * speed
|
||||
# for n in range(config.N_PIXELS):
|
||||
# T = t + n * dt
|
||||
# set_pixel(N=n, R=r(T), G=g(T), B=b(T))
|
||||
# update_pixels()
|
||||
# time.sleep(1.0 / fps)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
while True:
|
||||
update()
|
||||
#set_all(0, 0, 0)
|
||||
# rainbow(speed=0.025, fps=40, brightness=0)
|
||||
|
||||
pixels += 0.0
|
||||
update()
|
||||
|
@ -1,7 +1,6 @@
|
||||
import pyaudio
|
||||
import config
|
||||
|
||||
CHUNK = int(config.MIC_RATE / config.FPS)
|
||||
|
||||
def start_stream(callback):
|
||||
p = pyaudio.PyAudio()
|
||||
|
457
python/sandbox.py
Normal file
457
python/sandbox.py
Normal file
@ -0,0 +1,457 @@
|
||||
from __future__ import print_function
|
||||
from __future__ import division
|
||||
import time
|
||||
import numpy as np
|
||||
from pyqtgraph.Qt import QtGui
|
||||
import pyqtgraph as pg
|
||||
import config
|
||||
import microphone
|
||||
import dsp
|
||||
import led
|
||||
|
||||
|
||||
|
||||
def rainbow(length, speed=1.0 / 5.0):
|
||||
"""Returns a rainbow colored array with desired length
|
||||
|
||||
Returns a rainbow colored array with shape (length, 3).
|
||||
Each row contains the red, green, and blue color values between 0 and 1.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
length : int
|
||||
The length of the rainbow colored array that should be returned
|
||||
|
||||
speed : float
|
||||
Value indicating the speed that the rainbow colors change.
|
||||
If speed > 0, then successive calls to this function will return
|
||||
arrays with different colors assigned to the indices.
|
||||
If speed == 0, then this function will always return the same colors.
|
||||
|
||||
Returns
|
||||
-------
|
||||
x : numpy.array
|
||||
np.ndarray with shape (length, 3).
|
||||
Columns denote the red, green, and blue color values respectively.
|
||||
Each color is a float between 0 and 1.
|
||||
|
||||
"""
|
||||
dt = 2.0 * np.pi / length
|
||||
t = time.time() * speed
|
||||
def r(t): return (np.sin(t + 0.0) + 1.0) * 1.0 / 2.0
|
||||
def g(t): return (np.sin(t + (2.0 / 3.0) * np.pi) + 1.0) * 1.0 / 2.0
|
||||
def b(t): return (np.sin(t + (4.0 / 3.0) * np.pi) + 1.0) * 1.0 / 2.0
|
||||
x = np.tile(0.0, (length, 3))
|
||||
for i in range(length):
|
||||
x[i][0] = r(i * dt + t)
|
||||
x[i][1] = g(i * dt + t)
|
||||
x[i][2] = b(i * dt + t)
|
||||
return x
|
||||
|
||||
|
||||
_time_prev = time.time() * 1000.0
|
||||
"""The previous time that the frames_per_second() function was called"""
|
||||
|
||||
_fps = dsp.ExponentialFilter(val=config.FPS, alpha_decay=0.01, alpha_rise=0.01)
|
||||
"""The low-pass filter used to estimate frames-per-second"""
|
||||
|
||||
def frames_per_second():
|
||||
"""Return the estimated frames per second
|
||||
|
||||
Returns the current estimate for frames-per-second (FPS).
|
||||
FPS is estimated by measured the amount of time that has elapsed since
|
||||
this function was previously called. The FPS estimate is low-pass filtered
|
||||
to reduce noise.
|
||||
|
||||
This function is intended to be called one time for every iteration of
|
||||
the program's main loop.
|
||||
|
||||
Returns
|
||||
-------
|
||||
fps : float
|
||||
Estimated frames-per-second. This value is low-pass filtered
|
||||
to reduce noise.
|
||||
"""
|
||||
global _time_prev, _fps
|
||||
time_now = time.time() * 1000.0
|
||||
dt = time_now - _time_prev
|
||||
_time_prev = time_now
|
||||
if dt == 0.0:
|
||||
return _fps.value
|
||||
return _fps.update(1000.0 / dt)
|
||||
|
||||
|
||||
def update_plot_1(x, y):
|
||||
"""Updates pyqtgraph plot 1
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : numpy.array
|
||||
1D array containing the X-axis values that should be plotted.
|
||||
There should only be one X-axis array.
|
||||
|
||||
y : numpy.ndarray
|
||||
Array containing each of the Y-axis series that should be plotted.
|
||||
Each row of y corresponds to a Y-axis series. The columns in each row
|
||||
are the values that should be plotted.
|
||||
|
||||
Returns
|
||||
-------
|
||||
None
|
||||
"""
|
||||
global curves, p1
|
||||
colors = rainbow(config.N_CURVES) * 255.0
|
||||
for i in range(config.N_CURVES):
|
||||
curves[i].setPen((colors[i][0], colors[i][1], colors[i][2]))
|
||||
curves[i].setData(x=x, y=y[i])
|
||||
p1.autoRange()
|
||||
p1.setRange(yRange=(0, 2.0))
|
||||
|
||||
|
||||
_EA_norm = dsp.ExponentialFilter(np.tile(1e-4, config.N_PIXELS), 0.005, 0.25)
|
||||
"""Onset energy per-bin normalization constants
|
||||
|
||||
This filter is responsible for individually normalizing the onset bin energies.
|
||||
This is used to obtain per-bin automatic gain control.
|
||||
"""
|
||||
|
||||
_EA_smooth = dsp.ExponentialFilter(np.tile(1.0, config.N_PIXELS), 0.15, 0.80)
|
||||
"""Asymmetric exponential low-pass filtered onset energies
|
||||
|
||||
This filter is responsible for smoothing the displayed onset energies.
|
||||
Asymmetric rise and fall constants allow the filter to quickly respond to
|
||||
increases in onset energy, while slowly responded to decreases.
|
||||
"""
|
||||
|
||||
def interpolate(y, new_length):
|
||||
"""Intelligently resizes the array by linearly interpolating the values
|
||||
|
||||
Parameters
|
||||
----------
|
||||
y : np.array
|
||||
Array that should be resized
|
||||
|
||||
new_length : int
|
||||
The length of the new interpolated array
|
||||
|
||||
Returns
|
||||
-------
|
||||
z : np.array
|
||||
New array with length of new_length that contains the interpolated
|
||||
values of y.
|
||||
"""
|
||||
x_old = np.linspace(0, 1, len(y))
|
||||
x_new = np.linspace(0, 1, new_length)
|
||||
z = np.interp(x_new, x_old, y)
|
||||
return z
|
||||
|
||||
|
||||
# Individually normalized energy spike method
|
||||
# Works well with GAMMA_CORRECTION = True
|
||||
# This is one of the best visualizations, but doesn't work for everything
|
||||
def update_leds_6(y):
|
||||
"""Visualization using per-bin normalized onset energies
|
||||
|
||||
Visualizes onset energies by normalizing each frequency bin individually.
|
||||
The normalized bins are then processed and displayed onto the LED strip.
|
||||
|
||||
This function visualizes the onset energies by individually normalizing
|
||||
each onset energy bin. The normalized onset bins are then scaled and
|
||||
|
||||
Parameters
|
||||
----------
|
||||
y : numpy.array
|
||||
Array containing the onset energies that should be visualized.
|
||||
The
|
||||
"""
|
||||
|
||||
# Scale y to emphasize large spikes and attenuate small changes
|
||||
# Exponents < 1.0 emphasize small changes and penalize large spikes
|
||||
# Exponents > 1.0 emphasize large spikes and penalize small changes
|
||||
y = np.copy(y) ** 1.5
|
||||
|
||||
# Use automatic gain control to normalize bin values
|
||||
# Update normalization constants and then normalize each bin
|
||||
_EA_norm.update(y)
|
||||
y /= _EA_norm.value
|
||||
|
||||
"""Force saturated pixels to leak brighness into neighbouring pixels"""
|
||||
|
||||
def smooth():
|
||||
for n in range(1, len(y) - 1):
|
||||
excess = y[n] - 1.0
|
||||
if excess > 0.0:
|
||||
y[n] = 1.0
|
||||
y[n - 1] += excess / 2.0
|
||||
y[n + 1] += excess / 2.0
|
||||
|
||||
# Several iterations because the adjacent pixels could also be saturated
|
||||
for i in range(6):
|
||||
smooth()
|
||||
|
||||
# Update the onset energy low-pass filter and discard value too dim
|
||||
_EA_smooth.update(y)
|
||||
_EA_smooth.value[_EA_smooth.value < .1] = 0.0
|
||||
|
||||
# If some pixels are too bright, allow saturated pixels to become white
|
||||
color = rainbow(config.N_PIXELS) * 255.0
|
||||
for i in range(config.N_PIXELS):
|
||||
# Update LED strip pixel
|
||||
led.pixels[i, :] = np.round(color[i, :] * _EA_smooth.value[i]**1.5)
|
||||
# Leak excess red
|
||||
excess_red = max(led.pixels[i, 0] - 255, 0)
|
||||
led.pixels[i, 1] += excess_red
|
||||
led.pixels[i, 2] += excess_red
|
||||
# Leak excess green
|
||||
excess_green = max(led.pixels[i, 1] - 255, 0)
|
||||
led.pixels[i, 0] += excess_green
|
||||
led.pixels[i, 2] += excess_green
|
||||
# Leak excess blue
|
||||
excess_blue = max(led.pixels[i, 2] - 255, 0)
|
||||
led.pixels[i, 0] += excess_blue
|
||||
led.pixels[i, 1] += excess_blue
|
||||
led.update()
|
||||
|
||||
|
||||
_prev_energy = 0.0
|
||||
_energy_flux = dsp.ExponentialFilter(1.0, alpha_decay=0.05, alpha_rise=0.9)
|
||||
_EF_norm = dsp.ExponentialFilter(np.tile(1.0, config.N_PIXELS), 0.05, 0.9)
|
||||
_EF_smooth = dsp.ExponentialFilter(np.tile(1.0, config.N_PIXELS), 0.1, 0.9)
|
||||
|
||||
|
||||
# Individually normalized energy flux
|
||||
def update_leds_5(y):
|
||||
global _prev_energy
|
||||
# Scale y
|
||||
y = np.copy(y)
|
||||
y = y ** 0.5
|
||||
|
||||
# Calculate raw energy flux
|
||||
# Update previous energy
|
||||
# Rectify energy flux
|
||||
# Update the normalization constants
|
||||
# Normalize the individual energy flux values
|
||||
# Smooth the result using another smoothing filter
|
||||
EF = y - _prev_energy
|
||||
_prev_energy = np.copy(y)
|
||||
EF[EF < 0] = 0.0
|
||||
_EF_norm.update(EF)
|
||||
EF /= _EF_norm.value
|
||||
_EF_smooth.update(EF)
|
||||
# Cutoff values below 0.1
|
||||
_EF_smooth.value[_EF_smooth.value < 0.1] = 0.0
|
||||
|
||||
color = rainbow(config.N_PIXELS) * 255.0
|
||||
for i in range(config.N_PIXELS):
|
||||
led.pixels[i, :] = np.round(color[i, :] * _EF_smooth.value[i])
|
||||
# Share excess red
|
||||
excess_red = max(led.pixels[i, 0] - 255, 0)
|
||||
led.pixels[i, 1] += excess_red
|
||||
led.pixels[i, 2] += excess_red
|
||||
# Share excess green
|
||||
excess_green = max(led.pixels[i, 1] - 255, 0)
|
||||
led.pixels[i, 0] += excess_green
|
||||
led.pixels[i, 2] += excess_green
|
||||
# Share excess blue
|
||||
excess_blue = max(led.pixels[i, 2] - 255, 0)
|
||||
led.pixels[i, 0] += excess_blue
|
||||
led.pixels[i, 1] += excess_blue
|
||||
led.update()
|
||||
|
||||
|
||||
# Modulate brightness of the entire strip with no individual addressing
|
||||
def update_leds_4(y):
|
||||
y = np.copy(y)
|
||||
energy = np.sum(y * y)
|
||||
_energy_flux.update(energy)
|
||||
energy /= _energy_flux.value
|
||||
led.pixels = np.round((color * energy)).astype(int)
|
||||
led.update()
|
||||
|
||||
|
||||
# Energy flux based motion across the LED strip
|
||||
def update_leds_3(y):
|
||||
global pixels, color, _prev_energy, _energy_flux
|
||||
y = np.copy(y)
|
||||
# Calculate energy flux
|
||||
energy = np.sum(y)
|
||||
energy_flux = max(energy - _prev_energy, 0)
|
||||
_prev_energy = energy
|
||||
# Normalize energy flux
|
||||
_energy_flux.update(energy_flux)
|
||||
# Update pixels
|
||||
pixels = np.roll(pixels, 1)
|
||||
color = np.roll(color, 1, axis=0)
|
||||
pixels *= 0.99
|
||||
pixels[0] = energy_flux
|
||||
|
||||
led.pixels = np.copy(np.round((color.T * pixels).T).astype(int))
|
||||
for i in range(config.N_PIXELS):
|
||||
# Share excess red
|
||||
excess_red = max(led.pixels[i, 0] - 255, 0)
|
||||
led.pixels[i, 1] += excess_red
|
||||
led.pixels[i, 2] += excess_red
|
||||
# Share excess green
|
||||
excess_green = max(led.pixels[i, 1] - 255, 0)
|
||||
led.pixels[i, 0] += excess_green
|
||||
led.pixels[i, 2] += excess_green
|
||||
# Share excess blue
|
||||
excess_blue = max(led.pixels[i, 2] - 255, 0)
|
||||
led.pixels[i, 0] += excess_blue
|
||||
led.pixels[i, 1] += excess_blue
|
||||
# Update LEDs
|
||||
led.update()
|
||||
|
||||
|
||||
# Energy based motion across the LED strip
|
||||
def update_leds_2(y):
|
||||
global pixels, color
|
||||
y = np.copy(y)
|
||||
# Calculate energy
|
||||
energy = np.sum(y**2.0)
|
||||
onset_energy.update(energy)
|
||||
energy /= onset_energy.value
|
||||
# Update pixels
|
||||
pixels = np.roll(pixels, 1)
|
||||
color = np.roll(color, 1, axis=0)
|
||||
pixels *= 0.99
|
||||
pixels[pixels < 0.0] = 0.0
|
||||
pixels[0] = energy
|
||||
pixels -= 0.005
|
||||
pixels[pixels < 0.0] = 0.0
|
||||
led.pixels = np.copy(np.round((color.T * pixels).T).astype(int))
|
||||
for i in range(config.N_PIXELS):
|
||||
# Share excess red
|
||||
excess_red = max(led.pixels[i, 0] - 255, 0)
|
||||
led.pixels[i, 1] += excess_red
|
||||
led.pixels[i, 2] += excess_red
|
||||
# Share excess green
|
||||
excess_green = max(led.pixels[i, 1] - 255, 0)
|
||||
led.pixels[i, 0] += excess_green
|
||||
led.pixels[i, 2] += excess_green
|
||||
# Share excess blue
|
||||
excess_blue = max(led.pixels[i, 2] - 255, 0)
|
||||
led.pixels[i, 0] += excess_blue
|
||||
led.pixels[i, 1] += excess_blue
|
||||
# Update LEDs
|
||||
led.update()
|
||||
|
||||
|
||||
|
||||
def update_leds_1(y):
|
||||
"""Display the raw onset spectrum on the LED strip"""
|
||||
y = np.copy(y)
|
||||
y = y ** 0.5
|
||||
color = rainbow(config.N_PIXELS) * 255.0
|
||||
|
||||
led.pixels = np.copy(np.round((color.T * y).T).astype(int))
|
||||
for i in range(config.N_PIXELS):
|
||||
# Share excess red
|
||||
excess_red = max(led.pixels[i, 0] - 255, 0)
|
||||
led.pixels[i, 1] += excess_red
|
||||
led.pixels[i, 2] += excess_red
|
||||
# Share excess green
|
||||
excess_green = max(led.pixels[i, 1] - 255, 0)
|
||||
led.pixels[i, 0] += excess_green
|
||||
led.pixels[i, 2] += excess_green
|
||||
# Share excess blue
|
||||
excess_blue = max(led.pixels[i, 2] - 255, 0)
|
||||
led.pixels[i, 0] += excess_blue
|
||||
led.pixels[i, 1] += excess_blue
|
||||
led.update()
|
||||
|
||||
|
||||
def microphone_update(stream):
|
||||
global y_roll, median, onset, SF_peak, NWPD_peak, RCD_peak, onset_peak
|
||||
# Retrieve new audio samples and construct the rolling window
|
||||
y = np.fromstring(stream.read(samples_per_frame), dtype=np.int16)
|
||||
y = y / 2.0**15
|
||||
y_roll = np.roll(y_roll, -1, axis=0)
|
||||
y_roll[-1, :] = np.copy(y)
|
||||
y_data = np.concatenate(y_roll, axis=0)
|
||||
# Calculate onset detection functions
|
||||
SF, NWPD, RCD = dsp.onset(y_data)
|
||||
# Update and normalize peak followers
|
||||
SF_peak.update(np.max(SF))
|
||||
NWPD_peak.update(np.max(NWPD))
|
||||
RCD_peak.update(np.max(RCD))
|
||||
SF /= SF_peak.value
|
||||
NWPD /= NWPD_peak.value
|
||||
RCD /= RCD_peak.value
|
||||
# Normalize and update onset spectrum
|
||||
onset = SF * NWPD * RCD
|
||||
onset_peak.update(np.max(onset))
|
||||
onset /= onset_peak.value
|
||||
onsets.update(onset)
|
||||
# Update the LED strip and resize if necessary
|
||||
if len(onsets.value) != config.N_PIXELS:
|
||||
onset_values = interpolate(onsets.value, config.N_PIXELS)
|
||||
else:
|
||||
onset_values = np.copy(onsets.value)
|
||||
led_visualization(onset_values)
|
||||
# Plot the onsets
|
||||
plot_x = np.array(range(1, len(onsets.value) + 1))
|
||||
plot_y = [onsets.value**i for i in np.linspace(1, 0.25, config.N_CURVES)]
|
||||
update_plot_1(plot_x, plot_y)
|
||||
app.processEvents()
|
||||
print('{:.2f}\t{:.2f}\t{:.2f}\t{:.2f}\t{:.2f}'.format(SF_peak.value,
|
||||
NWPD_peak.value,
|
||||
RCD_peak.value,
|
||||
onset_peak.value,
|
||||
frames_per_second()))
|
||||
|
||||
|
||||
# Create plot and window
|
||||
app = QtGui.QApplication([])
|
||||
win = pg.GraphicsWindow('Audio Visualization')
|
||||
win.resize(800, 600)
|
||||
win.setWindowTitle('Audio Visualization')
|
||||
# Create plot 1 containing config.N_CURVES
|
||||
p1 = win.addPlot(title='Onset Detection Function')
|
||||
p1.setLogMode(x=False)
|
||||
curves = []
|
||||
colors = rainbow(config.N_CURVES) * 255.0
|
||||
for i in range(config.N_CURVES):
|
||||
curve = p1.plot(pen=(colors[i][0], colors[i][1], colors[i][2]))
|
||||
curves.append(curve)
|
||||
|
||||
|
||||
# Pixel values for each LED
|
||||
pixels = np.tile(0.0, config.N_PIXELS)
|
||||
# Used to colorize the LED strip
|
||||
color = rainbow(config.N_PIXELS) * 255.0
|
||||
|
||||
# Tracks average onset spectral energy
|
||||
onset_energy = dsp.ExponentialFilter(1.0, alpha_decay=0.1, alpha_rise=0.99)
|
||||
|
||||
|
||||
# Tracks the location of the spectral median
|
||||
median = dsp.ExponentialFilter(val=config.N_SUBBANDS / 2.0,
|
||||
alpha_decay=0.1, alpha_rise=0.1)
|
||||
# Smooths the decay of the onset detection function
|
||||
onsets = dsp.ExponentialFilter(val=np.tile(0.0, (config.N_SUBBANDS)),
|
||||
alpha_decay=0.05, alpha_rise=0.75)
|
||||
|
||||
# Peak followers used for normalization
|
||||
SF_peak = dsp.ExponentialFilter(1.0, alpha_decay=0.01, alpha_rise=0.99)
|
||||
NWPD_peak = dsp.ExponentialFilter(1.0, alpha_decay=0.01, alpha_rise=0.99)
|
||||
RCD_peak = dsp.ExponentialFilter(1.0, alpha_decay=0.01, alpha_rise=0.99)
|
||||
onset_peak = dsp.ExponentialFilter(0.1, alpha_decay=0.002, alpha_rise=0.1)
|
||||
|
||||
# Number of audio samples to read every time frame
|
||||
samples_per_frame = int(config.MIC_RATE / config.FPS)
|
||||
# Array containing the rolling audio sample window
|
||||
y_roll = np.random.rand(config.N_ROLLING_HISTORY, samples_per_frame) / 100.0
|
||||
|
||||
# Which LED visualization to use
|
||||
# update_leds_1 = raw onset spectrum without normalization (GAMMA = True)
|
||||
# update_leds_2 = energy average chase effect (GAMMA = True)
|
||||
# update_leds_3 = energy flux chase effect (GAMMA = True)
|
||||
# update_leds_4 = brightness modulation effect (GAMMA = True)
|
||||
# update_leds_5 = energy flux normalized per-bin spectrum (GAMMA = True)
|
||||
# update_leds_6 = energy average normalized per-bin spectrum (GAMMA = True)
|
||||
led_visualization = update_leds_6
|
||||
|
||||
if __name__ == '__main__':
|
||||
led.update()
|
||||
microphone.start_stream(microphone_update)
|
@ -24,7 +24,7 @@ class Beat:
|
||||
self.pixels = np.roll(self.pixels, roll, axis=0)
|
||||
self.pixels[:roll] *= 0.0
|
||||
|
||||
# Apply Gaussian blur to create a dispersion effect
|
||||
# Apply Gaussian blur to create a dispersion effect
|
||||
# Dispersion increases in strength over time
|
||||
sigma = (2. * .14 * self.iteration / (config.N_PIXELS * self.speed))**4.
|
||||
self.pixels = gaussian_filter1d(self.pixels, sigma, mode='constant')
|
||||
@ -35,11 +35,13 @@ class Beat:
|
||||
self.pixels = np.round(self.pixels, decimals=2)
|
||||
self.pixels = np.clip(self.pixels, 0, 255)
|
||||
|
||||
self.speed *= np.exp(2. * np.log(.8) / config.N_PIXELS)
|
||||
|
||||
def finished(self):
|
||||
return np.array_equal(self.pixels, self.pixels * 0.0)
|
||||
|
||||
|
||||
def rainbow(speed=1.0 / 5.0):
|
||||
def rainbow(speed=10.0 / 5.0):
|
||||
# Note: assumes array is N_PIXELS / 2 long
|
||||
dt = np.pi / config.N_PIXELS
|
||||
t = time.time() * speed
|
||||
@ -54,84 +56,70 @@ def rainbow(speed=1.0 / 5.0):
|
||||
return x
|
||||
|
||||
|
||||
def radiate(beats, beat_speed=1.0, max_length=26, min_beats=1):
|
||||
N_beats = len(beats[beats == True])
|
||||
# Add new beat if beats were detected
|
||||
if N_beats > 0 and N_beats >= min_beats:
|
||||
# Beat properties
|
||||
beat_power = float(N_beats) / config.N_SUBBANDS
|
||||
beat_brightness = min(beat_power * 40.0, 255.0)
|
||||
beat_brightness = max(beat_brightness, 40)
|
||||
beat_length = int(np.sqrt(beat_power) * max_length)
|
||||
beat_length = max(beat_length, 2)
|
||||
# Beat pixels
|
||||
beat_pixels = np.zeros(config.N_PIXELS / 2)
|
||||
beat_pixels[:beat_length] = beat_brightness
|
||||
# Create and add the new beat
|
||||
beat = Beat(beat_pixels, beat_speed)
|
||||
radiate.beats = np.append(radiate.beats, beat)
|
||||
# Pixels that will be displayed on the LED strip
|
||||
pixels = np.zeros(config.N_PIXELS / 2)
|
||||
if len(radiate.beats):
|
||||
pixels += sum([b.pixels for b in radiate.beats])
|
||||
for b in radiate.beats:
|
||||
b.update_pixels()
|
||||
# Only keep the beats that are still visible on the strip
|
||||
radiate.beats = [b for b in radiate.beats if not b.finished()]
|
||||
pixels = np.append(pixels[::-1], pixels)
|
||||
pixels = np.clip(pixels, 0.0, 255.0)
|
||||
pixels = (pixels * rainbow().T).T
|
||||
pixels = np.round(pixels).astype(int)
|
||||
led.pixels = pixels
|
||||
led.update()
|
||||
|
||||
|
||||
def radiate2(beats, beat_speed=0.8, max_length=26, min_beats=1):
|
||||
def radiate(beats, energy, beat_speed=1.0, max_length=7, min_beats=1):
|
||||
N_beats = len(beats[beats == True])
|
||||
|
||||
if N_beats > 0 and N_beats >= min_beats:
|
||||
index_to_color = rainbow()
|
||||
# Beat properties
|
||||
beat_power = float(N_beats) / config.N_SUBBANDS
|
||||
# energy = np.copy(energy)
|
||||
# energy -= np.min(energy)
|
||||
# energy /= (np.max(energy) - np.min(energy))
|
||||
beat_brightness = np.round(256.0 / config.N_SUBBANDS)
|
||||
beat_brightness *= np.sqrt(config.N_SUBBANDS / N_beats)
|
||||
beat_brightness *= 1.3
|
||||
beat_length = int(np.sqrt(beat_power) * max_length)
|
||||
beat_length = max(beat_length, 2)
|
||||
beat_pixels = np.tile(0.0, (config.N_PIXELS / 2, 3))
|
||||
for i in range(len(beats)):
|
||||
if beats[i]:
|
||||
beat_color = np.round(index_to_color[i] * beat_brightness)
|
||||
beat_color = np.round(index_to_color[i] * beat_brightness * energy[i] / 2.0)
|
||||
beat_pixels[:beat_length] += beat_color
|
||||
beat_pixels = np.clip(beat_pixels, 0.0, 255.0)
|
||||
beat = Beat(beat_pixels, beat_speed)
|
||||
radiate2.beats = np.append(radiate2.beats, beat)
|
||||
radiate.beats = np.append(radiate.beats, beat)
|
||||
|
||||
# Pixels that will be displayed on the LED strip
|
||||
pixels = np.zeros((config.N_PIXELS / 2, 3))
|
||||
if len(radiate2.beats):
|
||||
pixels += sum([b.pixels for b in radiate2.beats])
|
||||
for b in radiate2.beats:
|
||||
if len(radiate.beats):
|
||||
pixels += sum([b.pixels for b in radiate.beats])
|
||||
for b in radiate.beats:
|
||||
b.update_pixels()
|
||||
radiate2.beats = [b for b in radiate2.beats if not b.finished()]
|
||||
radiate.beats = [b for b in radiate.beats if not b.finished()]
|
||||
pixels = np.append(pixels[::-1], pixels, axis=0)
|
||||
pixels = np.clip(pixels, 0.0, 255.0)
|
||||
pixels = np.round(pixels).astype(int)
|
||||
led.pixels = pixels
|
||||
led.pixels = np.round(pixels).astype(int)
|
||||
led.update()
|
||||
|
||||
|
||||
# Number of audio samples to read every time frame
|
||||
samples_per_frame = int(config.MIC_RATE / config.FPS)
|
||||
# Array containing the rolling audio sample window
|
||||
y_roll = np.random.rand(config.N_ROLLING_HISTORY, samples_per_frame) / 100.0
|
||||
|
||||
def microphone_update(stream):
|
||||
frames_per_buffer = int(config.MIC_RATE / config.FPS)
|
||||
data = np.fromstring(stream.read(frames_per_buffer), dtype=np.int16)
|
||||
data = data / 2.0**15
|
||||
xs, ys = dsp.fft_log_partition(data=data, subbands=config.N_SUBBANDS)
|
||||
beats = dsp.beat_detect(ys)
|
||||
radiate2(beats)
|
||||
global y_roll
|
||||
# Read new audio data
|
||||
y = np.fromstring(stream.read(samples_per_frame), dtype=np.int16)
|
||||
y = y / 2.0**15
|
||||
# Construct rolling window of audio data
|
||||
y_roll = np.roll(y_roll, -1, axis=0)
|
||||
y_roll[-1, :] = np.copy(y)
|
||||
y_data = np.concatenate(y_roll, axis=0)
|
||||
# Take the real FFT with logarithmic bin spacing
|
||||
xs, ys = dsp.rfft_log_partition(y_data,
|
||||
subbands=config.N_SUBBANDS,
|
||||
window=np.hamming,
|
||||
fmin=1,
|
||||
fmax=14000)
|
||||
# Visualize the result
|
||||
beats, energy, variance = dsp.beat_detect(ys)
|
||||
radiate(beats, energy)
|
||||
|
||||
|
||||
# Initial values for the radiate effect
|
||||
radiate.beats = np.array([])
|
||||
radiate2.beats = np.array([])
|
||||
|
||||
if __name__ == "__main__":
|
||||
mic.start_stream(microphone_update)
|
||||
|
Loading…
Reference in New Issue
Block a user