Also added realtime adaptive brightness correction to avoid having the LED strip under or over saturated
201 lines
6.8 KiB
Python
201 lines
6.8 KiB
Python
from __future__ import print_function
|
|
from __future__ import division
|
|
import time
|
|
import numpy as np
|
|
from scipy.ndimage.filters import gaussian_filter1d
|
|
import config
|
|
import microphone
|
|
import dsp
|
|
import led
|
|
import gui
|
|
|
|
|
|
_time_prev = time.time() * 1000.0
|
|
"""The previous time that the frames_per_second() function was called"""
|
|
|
|
_fps = dsp.ExpFilter(val=config.FPS, alpha_decay=0.01, alpha_rise=0.01)
|
|
"""The low-pass filter used to estimate frames-per-second"""
|
|
|
|
|
|
def frames_per_second():
|
|
"""Return the estimated frames per second
|
|
|
|
Returns the current estimate for frames-per-second (FPS).
|
|
FPS is estimated by measured the amount of time that has elapsed since
|
|
this function was previously called. The FPS estimate is low-pass filtered
|
|
to reduce noise.
|
|
|
|
This function is intended to be called one time for every iteration of
|
|
the program's main loop.
|
|
|
|
Returns
|
|
-------
|
|
fps : float
|
|
Estimated frames-per-second. This value is low-pass filtered
|
|
to reduce noise.
|
|
"""
|
|
global _time_prev, _fps
|
|
time_now = time.time() * 1000.0
|
|
dt = time_now - _time_prev
|
|
_time_prev = time_now
|
|
if dt == 0.0:
|
|
return _fps.value
|
|
return _fps.update(1000.0 / dt)
|
|
|
|
|
|
def interpolate(y, new_length):
|
|
"""Intelligently resizes the array by linearly interpolating the values
|
|
|
|
Parameters
|
|
----------
|
|
y : np.array
|
|
Array that should be resized
|
|
|
|
new_length : int
|
|
The length of the new interpolated array
|
|
|
|
Returns
|
|
-------
|
|
z : np.array
|
|
New array with length of new_length that contains the interpolated
|
|
values of y.
|
|
"""
|
|
if len(y) == new_length:
|
|
return y
|
|
x_old = np.linspace(0, 1, len(y))
|
|
x_new = np.linspace(0, 1, new_length)
|
|
z = np.interp(x_new, x_old, y)
|
|
return z
|
|
|
|
|
|
def normalize(f):
|
|
"""Returns a histogram normalized numpy.array"""
|
|
lmin = float(f.min())
|
|
lmax = float(f.max())
|
|
return np.floor((f - lmin) / (lmax - lmin) * 255.0)
|
|
|
|
|
|
# r_filt = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS),
|
|
# alpha_decay=0.075, alpha_rise=0.6)
|
|
# g_filt = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS),
|
|
# alpha_decay=0.25, alpha_rise=0.9)
|
|
# b_filt = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS),
|
|
# alpha_decay=0.5, alpha_rise=0.95)
|
|
r_filt = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS),
|
|
alpha_decay=0.1, alpha_rise=0.6)
|
|
g_filt = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS),
|
|
alpha_decay=0.75, alpha_rise=0.95)
|
|
b_filt = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS),
|
|
alpha_decay=0.2, alpha_rise=0.4)
|
|
|
|
def visualize(y):
|
|
y = np.copy(interpolate(y, config.N_PIXELS)) * 255.0
|
|
# Blur the color channels with different strengths
|
|
r = gaussian_filter1d(y, sigma=1.0)
|
|
g = gaussian_filter1d(y, sigma=0.0)
|
|
b = gaussian_filter1d(y, sigma=0.0)
|
|
# Take the geometric mean of the raw and normalized histograms
|
|
# r = np.sqrt(r * normalize(r))
|
|
# g = np.sqrt(g * normalize(g))
|
|
# b = np.sqrt(b * normalize(b))
|
|
r = np.roll(g, 0)
|
|
g = np.roll(g, 0)
|
|
b = np.roll(g, 0)
|
|
# Update the low pass filters for each color channel
|
|
r_filt.update(r)
|
|
g_filt.update(g)
|
|
b_filt.update(b)
|
|
# Update the LED strip values
|
|
led.pixels[:, 0] = r_filt.value
|
|
led.pixels[:, 1] = g_filt.value
|
|
led.pixels[:, 2] = b_filt.value
|
|
# Update the GUI plots
|
|
GUI.curve[0][0].setData(x=range(len(r_filt.value)), y=r_filt.value)
|
|
GUI.curve[0][1].setData(x=range(len(g_filt.value)), y=g_filt.value)
|
|
GUI.curve[0][2].setData(x=range(len(b_filt.value)), y=b_filt.value)
|
|
led.update()
|
|
|
|
|
|
mel_gain = dsp.ExpFilter(np.tile(1e-1, config.N_PIXELS),
|
|
alpha_decay=0.01, alpha_rise=0.99)
|
|
# mel_gain = dsp.ExpFilter(np.tile(1e-1, config.N_PIXELS),
|
|
# alpha_decay=0.01, alpha_rise=0.99)
|
|
volume = dsp.ExpFilter(config.MIN_VOLUME_THRESHOLD,
|
|
alpha_decay=0.02, alpha_rise=0.02)
|
|
|
|
rms = dsp.ExpFilter(0.1, alpha_decay=0.001, alpha_rise=0.001)
|
|
exp = dsp.ExpFilter(0.5, alpha_decay=0.001, alpha_rise=0.001)
|
|
prev_rms = 1.0
|
|
prev_exp = 1.0
|
|
def microphone_update(stream):
|
|
global y_roll, prev_rms, prev_exp
|
|
# Normalize new audio samples
|
|
y = np.fromstring(stream.read(samples_per_frame), dtype=np.int16)
|
|
y = y / 2.0**15
|
|
# Construct a rolling window of audio samples
|
|
y_roll = np.roll(y_roll, -1, axis=0)
|
|
y_roll[-1, :] = np.copy(y)
|
|
y_data = np.concatenate(y_roll, axis=0)
|
|
volume.update(np.nanmean(y_data ** 2))
|
|
|
|
if volume.value < config.MIN_VOLUME_THRESHOLD:
|
|
print('No audio input. Volume below threshold. Volume:', volume.value)
|
|
visualize(np.tile(0.0, config.N_PIXELS))
|
|
else:
|
|
XS, YS = dsp.fft(y_data, window=np.hamming)
|
|
# Construct Mel filterbank
|
|
YS = YS[XS >= 0.0]
|
|
XS = XS[XS >= 0.0]
|
|
YS = np.atleast_2d(np.abs(YS)).T * dsp.mel_y.T
|
|
YS = np.sum(YS, axis=0)**2.0
|
|
mel = np.concatenate((YS[::-1], YS))
|
|
mel = interpolate(mel, config.N_PIXELS)
|
|
# mel = mel**0.4
|
|
mel = mel**exp.value
|
|
mel_gain.update(np.max(mel))
|
|
mel = mel / mel_gain.value
|
|
rms.update(np.sqrt(np.mean(mel**2.0)))
|
|
if rms.value > 4e-1:
|
|
exp.update(exp.value * 1.2)
|
|
elif rms.value < 5e-2:
|
|
exp.update(exp.value * 0.8)
|
|
|
|
rms_delta = '^' if rms.value - prev_rms > 0 else 'v'
|
|
exp_delta = '^' if exp.value - prev_exp > 0 else 'v'
|
|
print('|{}| {:.0e}, |{}| {:.2}'.format(rms_delta, rms.value, exp_delta, exp.value))
|
|
# WHAT IF I TAKE THE TEMPORAL VARIANCE OF EACH INDIVIDUAL BIN
|
|
# AND THEN CALCULATE THE COVARIANCE OF HOW THE DIFFERENT BIN VARIANCES
|
|
# CHANGE TOGETHER
|
|
# COULD COLOR BY COVARIANCE? BLUE PIXELS CHANGE TOGETHER, ETC
|
|
prev_exp = exp.value
|
|
prev_rms = rms.value
|
|
visualize(mel)
|
|
|
|
GUI.app.processEvents()
|
|
#print('FPS {:.0f} / {:.0f}'.format(frames_per_second(), config.FPS))
|
|
|
|
|
|
# Number of audio samples to read every time frame
|
|
samples_per_frame = int(config.MIC_RATE / config.FPS)
|
|
|
|
# Array containing the rolling audio sample window
|
|
y_roll = np.random.rand(config.N_ROLLING_HISTORY, samples_per_frame) / 1e16
|
|
|
|
|
|
if __name__ == '__main__':
|
|
import pyqtgraph as pg
|
|
GUI = gui.GUI(width=800, height=400, title='Audio Visualization')
|
|
# Audio plot
|
|
GUI.add_plot('Color Channels')
|
|
r_pen = pg.mkPen((255, 30, 30, 200), width=6)
|
|
g_pen = pg.mkPen((30, 255, 30, 200), width=6)
|
|
b_pen = pg.mkPen((30, 30, 255, 200), width=6)
|
|
GUI.add_curve(plot_index=0, pen=r_pen)
|
|
GUI.add_curve(plot_index=0, pen=g_pen)
|
|
GUI.add_curve(plot_index=0, pen=b_pen)
|
|
GUI.plot[0].setRange(xRange=(0, config.N_PIXELS), yRange=(-5, 275))
|
|
# Initialize LEDs
|
|
led.update()
|
|
# Start listening to live audio stream
|
|
microphone.start_stream(microphone_update)
|