audio-reactive-led-strip/python/visualization.py
Scott Lawson 46b404120f Fixed bug where ComboBox didn't match current effect
Fixed a bug where the GUI ComboBox value would sometimes not match the
effect being displayed. This bug sometimes occurs when the GUI is first
initialized. This change now ensures that the ComboBox value is
correctly initialized.
2017-01-01 13:12:38 -07:00

287 lines
9.8 KiB
Python

from __future__ import print_function
from __future__ import division
import time
import numpy as np
from scipy.ndimage.filters import gaussian_filter1d
import config
import microphone
import dsp
import led
import gui
_time_prev = time.time() * 1000.0
"""The previous time that the frames_per_second() function was called"""
_fps = dsp.ExpFilter(val=config.FPS, alpha_decay=0.002, alpha_rise=0.002)
"""The low-pass filter used to estimate frames-per-second"""
def frames_per_second():
"""Return the estimated frames per second
Returns the current estimate for frames-per-second (FPS).
FPS is estimated by measured the amount of time that has elapsed since
this function was previously called. The FPS estimate is low-pass filtered
to reduce noise.
This function is intended to be called one time for every iteration of
the program's main loop.
Returns
-------
fps : float
Estimated frames-per-second. This value is low-pass filtered
to reduce noise.
"""
global _time_prev, _fps
time_now = time.time() * 1000.0
dt = time_now - _time_prev
_time_prev = time_now
if dt == 0.0:
return _fps.value
return _fps.update(1000.0 / dt)
def interpolate(y, new_length):
"""Intelligently resizes the array by linearly interpolating the values
Parameters
----------
y : np.array
Array that should be resized
new_length : int
The length of the new interpolated array
Returns
-------
z : np.array
New array with length of new_length that contains the interpolated
values of y.
"""
if len(y) == new_length:
return y
x_old = np.linspace(0, 1, len(y))
x_new = np.linspace(0, 1, new_length)
z = np.interp(x_new, x_old, y)
return z
r_filt = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS // 2),
alpha_decay=0.08, alpha_rise=0.99)
g_filt = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS // 2),
alpha_decay=0.15, alpha_rise=0.99)
b_filt = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS // 2),
alpha_decay=0.25, alpha_rise=0.99)
p_filt = dsp.ExpFilter(np.tile(1, (3, config.N_PIXELS // 2)),
alpha_decay=0.05, alpha_rise=0.8)
p = np.tile(1.0, (3, config.N_PIXELS // 2))
gain = dsp.ExpFilter(np.tile(0.01, config.N_FFT_BINS),
alpha_decay=0.001, alpha_rise=0.99)
def largest_indices(ary, n):
"""Returns indices of the n largest values in the given a numpy array"""
flat = ary.flatten()
indices = np.argpartition(flat, -n)[-n:]
indices = indices[np.argsort(-flat[indices])]
return np.unravel_index(indices, ary.shape)
def visualize_max(y):
"""Experimental sandbox effect. Not recommended for use"""
y = np.copy(interpolate(y, config.N_PIXELS // 2)) * 255.0
ind = largest_indices(y, 15)
y[ind] *= -1.0
y[y > 0] = 0.0
y[ind] *= -1.0
# Blur the color channels with different strengths
r = gaussian_filter1d(y, sigma=0.25)
g = gaussian_filter1d(y, sigma=0.10)
b = gaussian_filter1d(y, sigma=0.00)
b = np.roll(b, 1)
b[0] = b[1]
r_filt.update(r)
g_filt.update(g)
b_filt.update(b)
# Pixel values
pixel_r = np.concatenate((r_filt.value[::-1], r_filt.value))
pixel_g = np.concatenate((g_filt.value[::-1], g_filt.value))
pixel_b = np.concatenate((b_filt.value[::-1], b_filt.value))
# Update the LED strip values
led.pixels[0, :] = pixel_r
led.pixels[1, :] = pixel_g
led.pixels[2, :] = pixel_b
led.update()
# Update the GUI plots
GUI.curve[0][0].setData(y=pixel_r)
GUI.curve[0][1].setData(y=pixel_g)
GUI.curve[0][2].setData(y=pixel_b)
def visualize_scroll(y):
"""Effect that originates in the center and scrolls outwards"""
global p
y = gaussian_filter1d(y, sigma=1.0)**3.0
y = np.copy(y)
gain.update(y)
y /= gain.value
y *= 255.0
r = int(max(y[:len(y) // 3]))
g = int(max(y[len(y) // 3: 2 * len(y) // 3]))
b = int(max(y[2 * len(y) // 3:]))
p = np.roll(p, 1, axis=1)
p *= 0.98
p = gaussian_filter1d(p, sigma=0.2)
p[0, 0] = r
p[1, 0] = g
p[2, 0] = b
# Update the LED strip
led.pixels = np.concatenate((p[:, ::-1], p), axis=1)
led.update()
# Update the GUI plots
GUI.curve[0][0].setData(y=np.concatenate((p[0, :][::-1], p[0, :])))
GUI.curve[0][1].setData(y=np.concatenate((p[1, :][::-1], p[1, :])))
GUI.curve[0][2].setData(y=np.concatenate((p[2, :][::-1], p[2, :])))
def visualize_energy(y):
"""Effect that expands from the center with increasing sound energy"""
global p
y = gaussian_filter1d(y, sigma=1.0)**3.0
gain.update(y)
y /= gain.value
y *= (config.N_PIXELS // 2) - 1
r = int(np.mean(y[:len(y) // 3]))
g = int(np.mean(y[len(y) // 3: 2 * len(y) // 3]))
b = int(np.mean(y[2 * len(y) // 3:]))
p[0, :r] = 255.0
p[0, r:] = 0.0
p[1, :g] = 255.0
p[1, g:] = 0.0
p[2, :b] = 255.0
p[2, b:] = 0.0
p_filt.update(p)
p = np.round(p_filt.value)
p[0, :] = gaussian_filter1d(p[0, :], sigma=4.0)
p[1, :] = gaussian_filter1d(p[1, :], sigma=4.0)
p[2, :] = gaussian_filter1d(p[2, :], sigma=4.0)
# Update LED pixel arrays
led.pixels = np.concatenate((p[:, ::-1], p), axis=1)
led.update()
# Update the GUI plots
GUI.curve[0][0].setData(y=np.concatenate((p[0, :][::-1], p[0, :])))
GUI.curve[0][1].setData(y=np.concatenate((p[1, :][::-1], p[1, :])))
GUI.curve[0][2].setData(y=np.concatenate((p[2, :][::-1], p[2, :])))
def visualize_spectrum(y):
"""Effect that maps the Mel filterbank frequencies onto the LED strip"""
y = np.copy(interpolate(y, config.N_PIXELS // 2)) * 255.0
# Blur the color channels with different strengths
r = gaussian_filter1d(y, sigma=0.25)
g = gaussian_filter1d(y, sigma=0.10)
b = gaussian_filter1d(y, sigma=0.00)
r_filt.update(r)
g_filt.update(g)
b_filt.update(b)
# Pixel values
pixel_r = np.concatenate((r_filt.value[::-1], r_filt.value))
pixel_g = np.concatenate((g_filt.value[::-1], g_filt.value))
pixel_b = np.concatenate((b_filt.value[::-1], b_filt.value))
# Update the LED strip values
led.pixels[0, :] = pixel_r
led.pixels[1, :] = pixel_g
led.pixels[2, :] = pixel_b
led.update()
# Update the GUI plots
GUI.curve[0][0].setData(y=pixel_r)
GUI.curve[0][1].setData(y=pixel_g)
GUI.curve[0][2].setData(y=pixel_b)
mel_gain = dsp.ExpFilter(np.tile(1e-1, config.N_FFT_BINS),
alpha_decay=0.01, alpha_rise=0.99)
volume = dsp.ExpFilter(config.MIN_VOLUME_THRESHOLD,
alpha_decay=0.02, alpha_rise=0.02)
def microphone_update(stream):
global y_roll, prev_rms, prev_exp
# Retrieve and normalize the new audio samples
y = np.fromstring(stream.read(samples_per_frame,
exception_on_overflow=False), dtype=np.int16)
y = y / 2.0**15
# Construct a rolling window of audio samples
y_roll = np.roll(y_roll, -1, axis=0)
y_roll[-1, :] = np.copy(y)
y_data = np.concatenate(y_roll, axis=0)
volume.update(np.nanmean(y_data ** 2))
if volume.value < config.MIN_VOLUME_THRESHOLD:
print('No audio input. Volume below threshold. Volume:', volume.value)
led.pixels = np.tile(0, (3, config.N_PIXELS))
led.update()
else:
# Transform audio input into the frequency domain
XS, YS = dsp.fft(y_data, window=np.hamming)
# Remove half of the FFT data because of symmetry
YS = YS[:len(YS) // 2]
XS = XS[:len(XS) // 2]
# Construct a Mel filterbank from the FFT data
YS = np.atleast_2d(np.abs(YS)).T * dsp.mel_y.T
# Scale data to values more suitable for visualization
YS = np.sum(YS, axis=0)**2.0
mel = YS**0.5
mel = gaussian_filter1d(mel, sigma=1.0)
# Normalize the Mel filterbank to make it volume independent
mel_gain.update(np.max(mel))
mel = mel / mel_gain.value
# Visualize the filterbank output
visualization_effect(mel)
GUI.app.processEvents()
print('FPS {:.0f} / {:.0f}'.format(frames_per_second(), config.FPS))
# Number of audio samples to read every time frame
samples_per_frame = int(config.MIC_RATE / config.FPS)
# Array containing the rolling audio sample window
y_roll = np.random.rand(config.N_ROLLING_HISTORY, samples_per_frame) / 1e16
visualization_effect = visualize_spectrum
"""Visualization effect to display on the LED strip"""
if __name__ == '__main__':
import pyqtgraph as pg
# Create GUI plot for visualizing LED strip output
GUI = gui.GUI(width=800, height=400, title='Audio Visualization')
GUI.add_plot('Color Channels')
r_pen = pg.mkPen((255, 30, 30, 200), width=6)
g_pen = pg.mkPen((30, 255, 30, 200), width=6)
b_pen = pg.mkPen((30, 30, 255, 200), width=6)
GUI.add_curve(plot_index=0, pen=r_pen)
GUI.add_curve(plot_index=0, pen=g_pen)
GUI.add_curve(plot_index=0, pen=b_pen)
GUI.plot[0].setRange(xRange=(0, config.N_PIXELS), yRange=(-5, 275))
GUI.curve[0][0].setData(x=range(config.N_PIXELS))
GUI.curve[0][1].setData(x=range(config.N_PIXELS))
GUI.curve[0][2].setData(x=range(config.N_PIXELS))
# Add ComboBox for effect selection
effect_list = {
'Scroll effect' : visualize_scroll,
'Spectrum effect' : visualize_spectrum,
'Energy effect' : visualize_energy
}
effect_combobox = pg.ComboBox(items=effect_list)
def effect_change():
global visualization_effect
visualization_effect = effect_combobox.value()
effect_combobox.setValue(visualization_effect)
effect_combobox.currentIndexChanged.connect(effect_change)
GUI.layout.addWidget(effect_combobox)
# Initialize LEDs
led.update()
# Start listening to live audio stream
microphone.start_stream(microphone_update)