46b404120f
Fixed a bug where the GUI ComboBox value would sometimes not match the effect being displayed. This bug sometimes occurs when the GUI is first initialized. This change now ensures that the ComboBox value is correctly initialized.
287 lines
9.8 KiB
Python
287 lines
9.8 KiB
Python
from __future__ import print_function
|
|
from __future__ import division
|
|
import time
|
|
import numpy as np
|
|
from scipy.ndimage.filters import gaussian_filter1d
|
|
import config
|
|
import microphone
|
|
import dsp
|
|
import led
|
|
import gui
|
|
|
|
_time_prev = time.time() * 1000.0
|
|
"""The previous time that the frames_per_second() function was called"""
|
|
|
|
_fps = dsp.ExpFilter(val=config.FPS, alpha_decay=0.002, alpha_rise=0.002)
|
|
"""The low-pass filter used to estimate frames-per-second"""
|
|
|
|
|
|
def frames_per_second():
|
|
"""Return the estimated frames per second
|
|
|
|
Returns the current estimate for frames-per-second (FPS).
|
|
FPS is estimated by measured the amount of time that has elapsed since
|
|
this function was previously called. The FPS estimate is low-pass filtered
|
|
to reduce noise.
|
|
|
|
This function is intended to be called one time for every iteration of
|
|
the program's main loop.
|
|
|
|
Returns
|
|
-------
|
|
fps : float
|
|
Estimated frames-per-second. This value is low-pass filtered
|
|
to reduce noise.
|
|
"""
|
|
global _time_prev, _fps
|
|
time_now = time.time() * 1000.0
|
|
dt = time_now - _time_prev
|
|
_time_prev = time_now
|
|
if dt == 0.0:
|
|
return _fps.value
|
|
return _fps.update(1000.0 / dt)
|
|
|
|
|
|
def interpolate(y, new_length):
|
|
"""Intelligently resizes the array by linearly interpolating the values
|
|
|
|
Parameters
|
|
----------
|
|
y : np.array
|
|
Array that should be resized
|
|
|
|
new_length : int
|
|
The length of the new interpolated array
|
|
|
|
Returns
|
|
-------
|
|
z : np.array
|
|
New array with length of new_length that contains the interpolated
|
|
values of y.
|
|
"""
|
|
if len(y) == new_length:
|
|
return y
|
|
x_old = np.linspace(0, 1, len(y))
|
|
x_new = np.linspace(0, 1, new_length)
|
|
z = np.interp(x_new, x_old, y)
|
|
return z
|
|
|
|
|
|
r_filt = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS // 2),
|
|
alpha_decay=0.08, alpha_rise=0.99)
|
|
g_filt = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS // 2),
|
|
alpha_decay=0.15, alpha_rise=0.99)
|
|
b_filt = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS // 2),
|
|
alpha_decay=0.25, alpha_rise=0.99)
|
|
p_filt = dsp.ExpFilter(np.tile(1, (3, config.N_PIXELS // 2)),
|
|
alpha_decay=0.05, alpha_rise=0.8)
|
|
p = np.tile(1.0, (3, config.N_PIXELS // 2))
|
|
gain = dsp.ExpFilter(np.tile(0.01, config.N_FFT_BINS),
|
|
alpha_decay=0.001, alpha_rise=0.99)
|
|
|
|
|
|
def largest_indices(ary, n):
|
|
"""Returns indices of the n largest values in the given a numpy array"""
|
|
flat = ary.flatten()
|
|
indices = np.argpartition(flat, -n)[-n:]
|
|
indices = indices[np.argsort(-flat[indices])]
|
|
return np.unravel_index(indices, ary.shape)
|
|
|
|
|
|
def visualize_max(y):
|
|
"""Experimental sandbox effect. Not recommended for use"""
|
|
y = np.copy(interpolate(y, config.N_PIXELS // 2)) * 255.0
|
|
ind = largest_indices(y, 15)
|
|
y[ind] *= -1.0
|
|
y[y > 0] = 0.0
|
|
y[ind] *= -1.0
|
|
# Blur the color channels with different strengths
|
|
r = gaussian_filter1d(y, sigma=0.25)
|
|
g = gaussian_filter1d(y, sigma=0.10)
|
|
b = gaussian_filter1d(y, sigma=0.00)
|
|
b = np.roll(b, 1)
|
|
b[0] = b[1]
|
|
r_filt.update(r)
|
|
g_filt.update(g)
|
|
b_filt.update(b)
|
|
# Pixel values
|
|
pixel_r = np.concatenate((r_filt.value[::-1], r_filt.value))
|
|
pixel_g = np.concatenate((g_filt.value[::-1], g_filt.value))
|
|
pixel_b = np.concatenate((b_filt.value[::-1], b_filt.value))
|
|
# Update the LED strip values
|
|
led.pixels[0, :] = pixel_r
|
|
led.pixels[1, :] = pixel_g
|
|
led.pixels[2, :] = pixel_b
|
|
led.update()
|
|
# Update the GUI plots
|
|
GUI.curve[0][0].setData(y=pixel_r)
|
|
GUI.curve[0][1].setData(y=pixel_g)
|
|
GUI.curve[0][2].setData(y=pixel_b)
|
|
|
|
|
|
def visualize_scroll(y):
|
|
"""Effect that originates in the center and scrolls outwards"""
|
|
global p
|
|
y = gaussian_filter1d(y, sigma=1.0)**3.0
|
|
y = np.copy(y)
|
|
gain.update(y)
|
|
y /= gain.value
|
|
y *= 255.0
|
|
r = int(max(y[:len(y) // 3]))
|
|
g = int(max(y[len(y) // 3: 2 * len(y) // 3]))
|
|
b = int(max(y[2 * len(y) // 3:]))
|
|
p = np.roll(p, 1, axis=1)
|
|
p *= 0.98
|
|
p = gaussian_filter1d(p, sigma=0.2)
|
|
p[0, 0] = r
|
|
p[1, 0] = g
|
|
p[2, 0] = b
|
|
# Update the LED strip
|
|
led.pixels = np.concatenate((p[:, ::-1], p), axis=1)
|
|
led.update()
|
|
# Update the GUI plots
|
|
GUI.curve[0][0].setData(y=np.concatenate((p[0, :][::-1], p[0, :])))
|
|
GUI.curve[0][1].setData(y=np.concatenate((p[1, :][::-1], p[1, :])))
|
|
GUI.curve[0][2].setData(y=np.concatenate((p[2, :][::-1], p[2, :])))
|
|
|
|
|
|
def visualize_energy(y):
|
|
"""Effect that expands from the center with increasing sound energy"""
|
|
global p
|
|
y = gaussian_filter1d(y, sigma=1.0)**3.0
|
|
gain.update(y)
|
|
y /= gain.value
|
|
y *= (config.N_PIXELS // 2) - 1
|
|
r = int(np.mean(y[:len(y) // 3]))
|
|
g = int(np.mean(y[len(y) // 3: 2 * len(y) // 3]))
|
|
b = int(np.mean(y[2 * len(y) // 3:]))
|
|
p[0, :r] = 255.0
|
|
p[0, r:] = 0.0
|
|
p[1, :g] = 255.0
|
|
p[1, g:] = 0.0
|
|
p[2, :b] = 255.0
|
|
p[2, b:] = 0.0
|
|
p_filt.update(p)
|
|
p = np.round(p_filt.value)
|
|
p[0, :] = gaussian_filter1d(p[0, :], sigma=4.0)
|
|
p[1, :] = gaussian_filter1d(p[1, :], sigma=4.0)
|
|
p[2, :] = gaussian_filter1d(p[2, :], sigma=4.0)
|
|
# Update LED pixel arrays
|
|
led.pixels = np.concatenate((p[:, ::-1], p), axis=1)
|
|
led.update()
|
|
# Update the GUI plots
|
|
GUI.curve[0][0].setData(y=np.concatenate((p[0, :][::-1], p[0, :])))
|
|
GUI.curve[0][1].setData(y=np.concatenate((p[1, :][::-1], p[1, :])))
|
|
GUI.curve[0][2].setData(y=np.concatenate((p[2, :][::-1], p[2, :])))
|
|
|
|
|
|
def visualize_spectrum(y):
|
|
"""Effect that maps the Mel filterbank frequencies onto the LED strip"""
|
|
y = np.copy(interpolate(y, config.N_PIXELS // 2)) * 255.0
|
|
# Blur the color channels with different strengths
|
|
r = gaussian_filter1d(y, sigma=0.25)
|
|
g = gaussian_filter1d(y, sigma=0.10)
|
|
b = gaussian_filter1d(y, sigma=0.00)
|
|
r_filt.update(r)
|
|
g_filt.update(g)
|
|
b_filt.update(b)
|
|
# Pixel values
|
|
pixel_r = np.concatenate((r_filt.value[::-1], r_filt.value))
|
|
pixel_g = np.concatenate((g_filt.value[::-1], g_filt.value))
|
|
pixel_b = np.concatenate((b_filt.value[::-1], b_filt.value))
|
|
# Update the LED strip values
|
|
led.pixels[0, :] = pixel_r
|
|
led.pixels[1, :] = pixel_g
|
|
led.pixels[2, :] = pixel_b
|
|
led.update()
|
|
# Update the GUI plots
|
|
GUI.curve[0][0].setData(y=pixel_r)
|
|
GUI.curve[0][1].setData(y=pixel_g)
|
|
GUI.curve[0][2].setData(y=pixel_b)
|
|
|
|
|
|
mel_gain = dsp.ExpFilter(np.tile(1e-1, config.N_FFT_BINS),
|
|
alpha_decay=0.01, alpha_rise=0.99)
|
|
volume = dsp.ExpFilter(config.MIN_VOLUME_THRESHOLD,
|
|
alpha_decay=0.02, alpha_rise=0.02)
|
|
|
|
|
|
def microphone_update(stream):
|
|
global y_roll, prev_rms, prev_exp
|
|
# Retrieve and normalize the new audio samples
|
|
y = np.fromstring(stream.read(samples_per_frame,
|
|
exception_on_overflow=False), dtype=np.int16)
|
|
y = y / 2.0**15
|
|
# Construct a rolling window of audio samples
|
|
y_roll = np.roll(y_roll, -1, axis=0)
|
|
y_roll[-1, :] = np.copy(y)
|
|
y_data = np.concatenate(y_roll, axis=0)
|
|
volume.update(np.nanmean(y_data ** 2))
|
|
|
|
if volume.value < config.MIN_VOLUME_THRESHOLD:
|
|
print('No audio input. Volume below threshold. Volume:', volume.value)
|
|
led.pixels = np.tile(0, (3, config.N_PIXELS))
|
|
led.update()
|
|
else:
|
|
# Transform audio input into the frequency domain
|
|
XS, YS = dsp.fft(y_data, window=np.hamming)
|
|
# Remove half of the FFT data because of symmetry
|
|
YS = YS[:len(YS) // 2]
|
|
XS = XS[:len(XS) // 2]
|
|
# Construct a Mel filterbank from the FFT data
|
|
YS = np.atleast_2d(np.abs(YS)).T * dsp.mel_y.T
|
|
# Scale data to values more suitable for visualization
|
|
YS = np.sum(YS, axis=0)**2.0
|
|
mel = YS**0.5
|
|
mel = gaussian_filter1d(mel, sigma=1.0)
|
|
# Normalize the Mel filterbank to make it volume independent
|
|
mel_gain.update(np.max(mel))
|
|
mel = mel / mel_gain.value
|
|
# Visualize the filterbank output
|
|
visualization_effect(mel)
|
|
GUI.app.processEvents()
|
|
print('FPS {:.0f} / {:.0f}'.format(frames_per_second(), config.FPS))
|
|
|
|
|
|
# Number of audio samples to read every time frame
|
|
samples_per_frame = int(config.MIC_RATE / config.FPS)
|
|
|
|
# Array containing the rolling audio sample window
|
|
y_roll = np.random.rand(config.N_ROLLING_HISTORY, samples_per_frame) / 1e16
|
|
|
|
visualization_effect = visualize_spectrum
|
|
"""Visualization effect to display on the LED strip"""
|
|
|
|
if __name__ == '__main__':
|
|
import pyqtgraph as pg
|
|
# Create GUI plot for visualizing LED strip output
|
|
GUI = gui.GUI(width=800, height=400, title='Audio Visualization')
|
|
GUI.add_plot('Color Channels')
|
|
r_pen = pg.mkPen((255, 30, 30, 200), width=6)
|
|
g_pen = pg.mkPen((30, 255, 30, 200), width=6)
|
|
b_pen = pg.mkPen((30, 30, 255, 200), width=6)
|
|
GUI.add_curve(plot_index=0, pen=r_pen)
|
|
GUI.add_curve(plot_index=0, pen=g_pen)
|
|
GUI.add_curve(plot_index=0, pen=b_pen)
|
|
GUI.plot[0].setRange(xRange=(0, config.N_PIXELS), yRange=(-5, 275))
|
|
GUI.curve[0][0].setData(x=range(config.N_PIXELS))
|
|
GUI.curve[0][1].setData(x=range(config.N_PIXELS))
|
|
GUI.curve[0][2].setData(x=range(config.N_PIXELS))
|
|
# Add ComboBox for effect selection
|
|
effect_list = {
|
|
'Scroll effect' : visualize_scroll,
|
|
'Spectrum effect' : visualize_spectrum,
|
|
'Energy effect' : visualize_energy
|
|
}
|
|
effect_combobox = pg.ComboBox(items=effect_list)
|
|
def effect_change():
|
|
global visualization_effect
|
|
visualization_effect = effect_combobox.value()
|
|
effect_combobox.setValue(visualization_effect)
|
|
effect_combobox.currentIndexChanged.connect(effect_change)
|
|
GUI.layout.addWidget(effect_combobox)
|
|
# Initialize LEDs
|
|
led.update()
|
|
# Start listening to live audio stream
|
|
microphone.start_stream(microphone_update)
|