From 6f98d3109610b651aa1e5df8b74827fff5ea790b Mon Sep 17 00:00:00 2001 From: Scott Lawson Date: Sat, 24 Dec 2016 22:54:43 -0700 Subject: [PATCH] Removed function that is no longer needed --- python/dsp.py | 79 +-------------------------------------------------- 1 file changed, 1 insertion(+), 78 deletions(-) diff --git a/python/dsp.py b/python/dsp.py index cc9a07d..5734408 100644 --- a/python/dsp.py +++ b/python/dsp.py @@ -1,6 +1,5 @@ from __future__ import print_function import numpy as np -from scipy.interpolate import interp1d import config import melbank @@ -26,83 +25,6 @@ class ExpFilter: return self.value -ys_prev = None -phase_prev = None -dphase_prev = None - - -def onset(yt): - """Detects onsets in the given audio time series data - - Onset detection is perfomed using an ensemble of three onset detection - functions. - - The first onset detection function uses the rectified spectral flux (SF) - of successive FFT data frames. - The second onset detection function uses the normalized weighted phase - difference (NWPD) of successive FFT data frames. - The third is a rectified complex domain onset detection function. - - The product of these three functions forms an ensemble onset detection - function that returns continuous valued onset detection estimates. - - Parameters - ---------- - yt : numpy.array - Array of time series data to perform onset detection on - - Returns - ------- - SF : numpy.array - Array of rectified spectral flux values - NWPD : numpy.array - Array of normalized weighted phase difference values - RCD : numpy.array - Array of rectified complex domain values - - References - ---------- - Dixon, Simon "Onset Detection Revisted" - """ - global ys_prev, phase_prev, dphase_prev - xs, ys = fft(yt, window=np.hamming) - ys = ys[(xs >= config.MIN_FREQUENCY) * (xs <= config.MAX_FREQUENCY)] - xs = xs[(xs >= config.MIN_FREQUENCY) * (xs <= config.MAX_FREQUENCY)] - magnitude = np.abs(ys) - phase = np.angle(ys) - # Special case for initialization - if ys_prev is None: - ys_prev = ys - phase_prev = phase - dphase_prev = phase - # Rectified spectral flux - SF = magnitude - np.abs(ys_prev) - SF[SF < 0.0] = 0.0 - # First difference of phase - dphase = phase - phase_prev - # Second difference of phase - ddphase = dphase - dphase_prev - # Normalized weighted phase deviation - NWPD = np.abs(ddphase) * magnitude - # Rectified complex domain onset detection function - RCD = np.abs(ys - ys_prev * dphase_prev) - RCD[RCD < 0.0] = 0.0 - RCD = RCD - # Update previous values - ys_prev = ys - phase_prev = phase - dphase_prev = dphase - # Replace NaN values with zero - SF = np.nan_to_num(SF) - NWPD = np.nan_to_num(NWPD) - RCD = np.nan_to_num(RCD) - # Convert onset detection to logarithmically spaced bins - _, SF = log_partition(xs, SF, subbands=config.N_FFT_BINS) - _, NWPD = log_partition(xs, NWPD, subbands=config.N_FFT_BINS) - _, RCD = log_partition(xs, RCD, subbands=config.N_FFT_BINS) - return SF, NWPD, RCD - - def rfft(data, window=None): window = 1.0 if window is None else window(len(data)) ys = np.abs(np.fft.rfft(data * window)) @@ -124,6 +46,7 @@ mel_y, (_, mel_x) = melbank.compute_melmat(num_mel_bands=config.N_FFT_BINS, num_fft_bands=samples, sample_rate=config.MIC_RATE) + def create_mel_bank(n_history): global samples, mel_y, mel_x config.N_ROLLING_HISTORY = n_history